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SUMMARY

This workbook is a supplement to an earlier NASA publication,
NASA CR-134906, which is intended to provide the designer and
safety engineer with rapid methods for predicting damage and
hazards from explosions of liquid propellant and compressed gas
vessels used in ground storage, transport and handling. As in the
earlier workbook, information is presented in the form of graphs
and tables to allow easy calculation, using only desk or handheld
calculators. When complex methods have been used to develop
simple prediction aids, they are fully described in appendices.

Topics covered in various chapters are:

(1) Estimates of explosive yield

(2) Characteristics of pressure waves

(3) Effects of Pressure waves

(4) Characteristics of fragments

(5) Effects of fragments and related topics

A short concluding chapter gives a general discussion and
some recommendations for further work.

"Ir the text of this report there is frequent refer
. X ) ence msd
HASA CR-134904, For the microfiche of NASA CR-134506, please refer to N76-?9;;6 T
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INTRODUCTION

General Discussion

This workbook is a companion to an earlier NASA workbook
[Baker, et al (1975)], NASA CR-134906, which was prepared to aid
designers and safety engineers in predicting damage and hazards
from accidental explosions involving liquid propellants and
compressed gases in flight hardware. This book, in contrast, is
devoted to blast and fragment hazards for the same classes of
accidental explosion sources in propellant ground handling and
transport systems. Prediction methods which were thoroughly
covered in the earlier workbook and which apply without change
will not be repeated here. Instead, explosion hazards peculiar
to ground storage and transport systems, or ranges of input
parameters specific to these systems, will be emphasized. For
completeness, the reader should use the earlier workbook in con-
junction with this one.

A microfiche supplement of the workbook is attached to the
back cover for the convenience of the reader.

Nature of the Hazards

The general nature of the hazards from accidental explosions
in propellant and industrial gases ground handling systems 1is
similar in many respects to the hazards which occur in such ex-
plosions in flight vehicles. These accidents cause damage by
air blast loading, fragment or appurtenance impact, radiation
from fireballs, or fire from ignition of combustible materials
following an explosion. Damage can occur to buildings and other
facilities, vehicles, and flora and fauna--including humans.
Depending on the severity, type and location of an explosion
accident, the damage can range from minor to extensive.

The sequences of events or causes of accidental explosions
in ground handling systems for liquid propellants and compressed
gases can be quite similar to those which can occur in flight
vehicles, or can differ markedly. Failure by material fatigue on
overstress can occur in either case. But, many of the possible
causes of flight vehicle explosions such as loss of thrust during
launch, guidance system failure, or rupture of a bulkhead se-
parating a fuel from an oxidizer, are inapplicable for ground
handling systems. Conversely, transportation accidents followed
by explosions are causes which are absent in flight vehicle
accidents.

Ground handling systems usually have less serious weight
constraints than do flight vehicles. This difference dictates
some of the differences in the nature of the hazards. Ground sys~—

2
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tems can employ relatively massive, ductile materials in

pressure vessel and piping construction. On failure, such vessels
generate relatively few fragments compared to similar failures

in flight-weight vessels. A failure of a long cylindrical

vessel near one end can often result in most of the vessel re-
maining intact, and "rocketing" as the internal compressed fluid
is ejected from the rupture. This mode of failure has never been
observed in flight-weight pressure vessels or tankage, which have
less ductility and instead break into a relatively large number
of fragments. Pressure vessels used in ground systems are often
of much larger capacity than flight systems. The total stored
energy in compressed gases or total chemical energy in stored
fuels and oxidants can then be much greater than for many flight
systems.

Unfortunately, many more accidental explosions have occurred
involving fuels and compressed fluids in ground handling than in
flight vehicles. There is a considerable body of accident report
literature [see, for example, Strehlow & Baker (1975, 1976)]
which highlight the probable types of accident. These are (not
necessarily in order of probability):

1) Simple pressure vessel failure because of fatigue or
flaw growth.

2) Vessel failure induced by impact during a transporta-
tion accident.

3) Vessel failure by overpressure because of overheating.
This often follows a derailment accident with railroad
tank cars.

4) Vessel and pipeline failure by overpressure, corrosion
or erosion.

5) Fuel leakage followed by a vapor cloud explosion.

Blast and some type of fragment or massive body impact usually
result from the first four types of accident; the last type
causes primarily a pressure wave and fireball; while the first
four may or may not cause fireball or fire depending on the fluid
and circumstances in the accident.

Assessment of the magnitudes and the effects of the blas?
and fragments for ground system explosions is the topic of this
workbook.

Means for Assessment of Risk

The term "risk assessment"” implies not only the estimation
of effects of some potentially dangerous operation or situation,
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but also the estimation of the probability that the event will
occur and cause some level of damage. We do not address here
the overall problem of risk assessment, but instead cover only
the prediction of the effects. Throughout, we assume that some
postulated explosive accident can and has happened. This work-
book therefore covers only the more deterministic aspects of
explosions and their effects, but can serve as inputs to the
probabilistic models used in complete risk assessment studies.

Scope and Significance of Material Presented

From the material presented in this workbook, one should be
able to make predictions of blast and fragment characteristics
and effects for a wide range of possible explosion accidents
in ground systems. The body of the workbook gives the predic-
tion methods in the form of graphs, equations, or tables. All
detailed development and some computer programs are given in
appendices. Given a number of accident scenarios, the material
should allow prediction of:

1) Explosive energy yield or energy release.

2) Characteristics of blast pressure waves generated by
spherical and non-spherical explosions.

3) Effects of pressure waves on certain classes of tar-
gets or for blast loading conditions not covered in
Baker, et al (1975).

4) Characteristics of fragments generated by ground
equipment explosions. This includes massive vessel
parts which "rocket."

5) Effects of fragment impact not covered in Baker, et
al (1975), including effects of fragment revetments
on blast waves.

The scope of the material presented here is deliberately
limited to avoid duplication with the previous workbook [Baker,
et al (1975)]. As noted earlier, it should be used in conjunction
with that reference. (Microfiche)

Significant advances presented here are:

1) Prediction of blast wave characteristics for non-
spherical sources.

2) Some additional methods for rapid prediction of
structural damage from blast waves and massive
fragment impact.
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3) Extensions of methods of predicting such fragment
characteristics as initial velocity, maximum range,
and impact conditions.

4) Development of method for predicting trajectories and
impact conditions for "rocketing" vessels.

5) Inclusion of predictions for effects of barricades
on blast waves.

Intended Purpose and Limits of Use

The purpose of the workbook is to provide safety engineers
with methods for rapid estimation of blast and fragment hazards
from accidental explosions in ground support and transport equip-
ment. It should require only a desk or pocket calculator, or
slide rule to perform any of the needed calculations. There are,
of course, a number of limits to the calculations and their
applicability which the user should observe. Because almost
all of the data we will use are graphical, these limits will
often be self-evident from the extreme values on the graphs.

In general, one should not extend or extrapolate these graphs, but
should instead merely report that prediction is not possible if
input parameters fall outside the range of the plot.

Factors of safety are included in the prediction methods in
various ways. When curves are based on experiments, error
bands are usually given. Use of average curves through the
data will give most probable values for such loading parameters
as blast overpressure and impulse; use of the upper limits of
the error band will assure conservatism by encompassing all of
the extreme values in the measured data rather than the most pro-
bable. Most of the fragment data must be presented statistically.
The user is often given a choice of several regression lines
through the data. Choice of such a line with a very high
probability of, say, predicting that all fragments less than a
certain mass will fall to earth within a given distance, will
assure a high factor of safety in estimating exclusion distances
for possible fragment damage. In estimating effects of blast
and fragments, factors of safety are included by estimating
different degrees of damage given blast envelopment or fragment
impact. For structures, estimates can be made for lower limits
to damage (threshold of no damage at all) through quite severe
structural damage to buildings, vehicles, etc. For estimation
methods which are based on sparse data or analysis, we have
large bands of uncertainty~-the user should apply upper limits
of these bands, if in doubt.
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Applications to Areas Other Than Aerospace
Propellant and High Pressure Gas
Handling Facilities

This workbook can be as easily applied to many types of indus-
trial explosive accidents as to those limited to aerospace
propellants and high pressure gases. There have been many gas
pressure vessel failures, road and rail tanker accidents with
fuels such as LPG (liquified petroleum gas) followed by explo-
sion and fire, and piping failures in chemical plants followed
by vapor cloud explosions. For all such accidents, the methods
presented here can be applied to estimation of blast and fragment
hazards.

Additional Areas of Research

The methods given here are based on the best test data,
analysis methods, and accident reports available to us. But,
in many of these areas, the data base is quite sketchy and the
governing physical processes are as yet poorly understood. We
feel that additional work is needed in the following areas:

1) A better understanding and better methods of predic~-
tion of conditions under which vapor cloud explosions
will occur, and the blast wave properties for such
explosions.

2) A more thorough study of non~-spherical accidental
explosion effects.

3) Extension of the pressure-impulse (P-I) damage concept
to typical blast waves for accidental explosions. In
particular, the pronounced negative phase characteris-
tics of such explosions should be considered.

4) Better definition of impact effects for large, massive
fragments or objects.

5) Establishment of a more comprehensive and accurate
system or method for reporting of explosion accidents.
In particular, good industrial accident reporting
could greatly increase the data base for comparison
with these prediction methods or for judging explosion
severity.
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CHAPTER I

ESTIMATES OF EXPLOSIVE YIELD
1-1 General

Methods for estimating explosive yields, i.e., total energies
which can be released in an explosive accident, are discussed in
some depth by Baker, et al (1975) for the common mixtures of
fuels and oxidizers employed in liquid-~fueled rockets. Methods
are given in that reference for estimating explosive yields
for a variety of classes of explosive accident and propellant
mixtures. No new data or methods have been developed since, and
one should simply use that reference to estimate explosive yields
for liquid propellant mixtures. :

Baker, et al, (1975) also give a formula for estimating
explosive yields for bursts of compressed gas vessels. Con-
siderable analytic and experimental work on this topic has been
done recently, and we will use this work as a basis for improving
estimation of blast yields for this source.

A significant number of explosive accidents have occurred
after failure of pressure vessels containing flash-evaporating
liquids under high pressure, either at ambient temperature or
heated. Methods have been developed to estimate blast yields
for such explosions and these will be presented here.

An important class of accidental explosions in ground sys-
tems is the unconfined vapor cloud explosion. A gquantity of fuel
is released to the atmosphere as a vapor or aerosol, the fuel
mixes with the air, and the resulting fuel-air mixture is then
ignited by some ignition source. An explosion may or may not
result, depending on a number of variables. We will survey
knowledge on this class of accidental explosion, and recommend
some ways of obtaining rough estimates of blast yield.

1-2 Compressed Gas Bursts
In Baker, et al (1975), the formula for total energy release

originally proposed by Brode (1959) was used to predict explosive
yield for compressed gas vessel bursts. This formula is

Py = P,
E = ﬁ Vl (l'—l)

where E is blast yield (energy), P is initial absolute pressure
in the vessel, p_ is outside atmosphere absolute pressure, and

Y, is the ratio of specific heats for the gas in the vessel.

A number of other formulas have been proposed, and these are

8
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discussed in some detail and analyzed by Adamczyk and Strehlow
(1977). They include an estimate based on isentropic expansion
from initial burst pressure to atmospheric pressure [Baker (1973),

Brinkley (1969)],
-1

71
p,V p
E=-22(1-([2) M ] (1-2)
s Py

and, as a lower limit, the energy released by constant pressure
addition of energy to the explosion source region [Adamczyk and
Strehlow (1977)1,

E=p, (Vg - V) (1-3)

where V. is the final volume occupied by the gas which was origin-
ally in"the vessel. These three equations are given in descend-
ing order of total blast energy, with eq. (1-3) representing the
energy release for a process which is so slow that no blast wave
is formed. )

Adamczyk and Strehlow (1977) show that the blast yield must
lie between egs. (1-2) and (1-3). However, eq. (1-1) gives only
slightly higher values than does (1-2), and is simpler. So,
realizing that its use results in an overestimate of blast yield,
we retain it for this workbook. The reader can use eq. (1-2),
however, for a somewhat more accurate estimate which is still
an overestimate, and hence is conservative.

The equations given here for blast yield are all based on the
assumption that all of the energy which can drive a blast wave does
so, depending only on the energy release rate. For real vessels,
some energy must be absorbed by the vessel as it fractures, both
in the fracturing process itself and in accelerating the vessel
pieces or fragments to their maximum velocity. For failure of
a compressed gas vessel, the energy absorbed in the fracture pro-
cess is negligible because the vessel is already stressed to
failure. But, the energy absorbed in -accelerating vessel frag-
ments can be significant. In experiments such as those of Esparza
and Baker (1977a) and Boyer, et al (1958) with pressurized glass
spheres and Pittman (1972), (1975) with metal pressure vessels,
the fragments were observed with high speed cameras or other ve-
locity measuring systems. In accidental vessel bursts, the velo-
cities of fragments can be estimated by methods to be presented in
Chapter IV. Knowing mean fragment velocity U and total mass M
of the vessel, one can then compute the kinetic energy of the
vessel fragments

E. = M U%/2 (1-4)

k
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To obtain an estimate of effective blast yield for gas vessel
bursts, we then use either eq. (1-~1) or (1-2) and subtract
fragment kinetic energy, i.e.,

Ee = FE - Ek _ (1-5)

1-3 Flash-Evaporating Liquid Bursts

Many fluids are stored in vessels under sufficient pressure
that they remain essentially liquid at the vapor pressure corres-
ponding to the storage temperature for the particular liquid.
Examples are the fuels propane or butane which are normally stored
at "room" temperature, methane (LNG) and hydrogen (LH,) which
must be stored at cryogenic temperatures, and refrigefants such
as ammonia or the Freons which are also stored at room temperature.
If a vessel containing such fluids fails, the resulting sudden
pressure release can cause expansion of vapor in ullage space and
partial flash evaporation of the liquid, and drive a blast wave
into the surrounding air,

Because the properties of flash-evaporating fluids differ
markedly from perfect gases, the methods for estimating blast
yield for gas vessel bursts are inapplicable. Instead, one must
know the complete thermodynamic properties of the fluid in the
vessel as functions of state variables such as pressure, specific
volume, temperature, and entropy.

For any expansion process from state 1 to state 2, the speci-
fic work done is defined (see any basic thermodynamics text) as

e=ul-u2=f12pdv (1-6)

where u is internal energy, and v is specific volume. We assume
that an isentropic expansion process occurs after vessel burst.
This process is shown schematically in a p-v diagram in Fig. 1-1,
and in a T-s (temperature-entropy) diagram in Fig. 1-2. The
particular initial state 1 shown in these two figures lies in

the superheated vapor region, and so does the final state 2 after
isentropic expansion to ambient pressure P,. The cross-hatched
area in Fig. 1l-1 is the integral of eq. (1%6), and therefore
represents the specific energy e. Also shown in the two figures
are the saturated liquid and saturated vapor lines, which bound
the wet vapor region. Whenever the expansion process occurs near
or in the wet vapor region, as is always true for flash-evaporating
fluids, the functional relationship between pressure and specific
volume is quite complex and the integral in eq. (1-6) cannot be
obtained analytically. But fortunately, there are tables of
thermodynamic properties available for many fluids, and the in-

10
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ternal energy u or enthalpy h defined as
h =u+ pv (1-7)

are tabulated for the entire wet vapor region and the superheat
region, as functions of pressure and specific volume, or tempera-
ture and entropy. When an initial or a final state falls within
the wet vapor region, an important parameter is the quality of
the vapor, defined as

he
h

<

Y- —vf _ s—sf _ u--uf _ h-
g-vf sg-—sf ug-uf h

(1-8)

<

where subscript f refers to fluid (saturated liquid) and sub-
script g refers to gas (saturated vapor). Also, within the wet
vapor region, a given pressure uniquely defines a corresponding
temperature, and vice versa.

In bursts of vessels containing flash-evaporating fluids,
three combinations of state variables are possible at states
1l and 2. These are:

Case 1) Superheated vapor at state 1 and at state 2 (as
for the process shown in Figs. 1-1 and 1-~2)

Case 2) Superheated vapor at state 1 and wet vapor at state
2

Case 3) Wet vapor (including both saturated liquid and
saturated vapor) at state 1, and wet vapor at
state 2,

The process of estimating e and total blast yield E is basically
the same, but, depending on where state 1 lies, the procedure for

entering the thermodynamic tables differs somewhat. The basic
procedure is as follows:

Step 1) Estimate the initial state variables, including
pll vlr Sl’ ul, or hl

Step 2) Assume isentropic expansion to atmospheric pressure
Py i.e., Sy = S;- Determine Vor Uy, OF h2.

Step 3) Calculate specific work e from eq. (1-6)

Step 4) Calculate total blast yield E by multiplying e
by mass m of fluid initially present in the vessel.

In Step 4, we use the basic definition of specific volume to obtain

12
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the mass m of fluid from the known vessel volume Vl’

v, = Vl/m (1-9)

1

and compute E from
E = m(u2 - ul) (1-10)

Let us describe the differences in the three cases enumerated
above. 1In Cases 1 and 2, the initial state conditions must be
obtained from superheat tables for the fluid, usually entering
with knowledge of the pressure and temperature together. 1In Case
1, superheat tables are also used for p, = Pyr S, = Sy to obtain
the final state conditions; while in CaSe 2, the satu%ated vapor
tables must be used with the definition of final guality x,, deter-
mined from final entropy s,, being the most important factor. In
case 3, all values are found in the saturated vapor table, with
initial quality x, usually being determined from a real or ficti-
tious initial spe%ific volume. This case is probably the most
common for flash-evaporating fluid vessel bursts. The fictitious
initial specific volume for a vessel which is partially filled
is obtained simply from eg. (1-9) by using m as the mass of liquid
in the vessel of volume V,.

Some tables of thermodynamic properties for fluids which
can be used to estimate blast yields by the process just described
are the ASHRAE Handbook of Fundamentals for refrigerants, Keenan,
et al (1969) for steam, Din (1962) for a number of fluids including
fuels such as propane and ethylene, and Goodwin (1974) and Goodwin,
et al (1976) for methane and ethane. In many instances, these
tables do not include internal energy u directly, but instead
include h, p and v. One then has to use eg. (1-7) to calculate
u. Also, most of tables are given in English units, so calcula-
tions are usually made in these units. €I units are shown,
and a conversion table is provided.

Several example calculations of blast energy for Freon 12
refrigerant, using tables from the ASHRAE handbook, follow:

Isentropic expansion of Freon-12 liquid at pl/p = 20.3
and room temperature 6 = 76°F. Since no properti&s ~for com-
pressed (subcooled) liquid Freon-~12 seem to be available, pro-
perties for state 1 will be assumed as those of a saturated li-
quid. Furthermore, since this is an estimate of the change in
internal energy caused by the expansion of the pressurized re-
frigerant, interpolation of table values will be minimized.

13

N U N E LI LK L LK E HH B KU H B I B K Lk L



For Py = 290 psi < 296 psia

specific volume v, = 0.01465 £t>/lb_

enthalpy hl = 48.065 Btu/lbm

entropy S = 0.091159 Btu/lbm°F

and internal energy u, = hl - P1Vys
therefore u, = 47.27 Btu/lbm.

At state 2 after expansion (sl = 52) to Py ~ 14.22 psia, the
quality of vapor X, is

S - 8
X2 = _l_f = 0.508
Sg - Sf

Therefore,

Va = Ve, + X Vv = 1.328 ft3/lb

2 £ fg ) m

h2 = hf + x hfg = 39.759 Btu/lbm
and

u, = h2 - Pyv, = 36.263 Btu/lbm
Thus,

e = ul - u2 = 11.0 Btu/lbm

Converting this to an energy per unit volume,

€ = 247.6 Btu/ft3
Vi

For a vessel with initial volume V, = 31.24 in3, the estimated

energy availahle due to an isentropic expansion was

14
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V) = 247.6 Btu/ft> x 9336 in-1b_/Btu x

=
il
<|

1

I%5§ ££3/in3 x 31.24 in3

or

to
It

11,200 Joules

If the fragment velocity is measured, then the kinetic energy of
the fragments would be subtracted to obtain the energy available
for driving a blast wave, using eq. (1-5).

For an isentropic expansion of Freon-12 vapor at pl/pa = 3.45
and 81 = 78°F,

3
0.90 ft /lbm

Vl=
hl = 88.42 Btu/lbm

= - ©
s, = 0.17984 Btu/lbm F

and

u, = hl - PV = 80.2 Btu/lbm
At P2 ~ 14.0 psia
S, = s; 2 sg (still in superheated region)

3
2.83 ft /lbm

v, =

h2 = 78.42 Btu/lbm
and

u, = 71.09 Btu/lbm

Therefore,
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e = 9.11 Btu/lbm

and

e _
v 3.337v

1 1

For a vessel with Vl = 37.59 in3

E = 3.337 BTU/ft> x 9336 in-1b_/BTU x I%?? ££3/in3 x
37.59 inS
E = 678 in-lb,

or

E = 76.5 Joules

1-4 Vapor Cloud Explosions

A number of very damaging explosions have occurred after
release of fuels as gases or aerosols. Strehlow and Baker (1975)
have listed some of the more significant accidental explosions
of this nature. Probably the most damaging vapor cloud explosion
to date occurred in a chemical plant at Flixborough [Tucker (1975),
Parker, et al (1974)] in 1974, with 28 fatalities and well over
$100 million in damage including almost complete destruction of
the plant. The fuel which was released in this explosion was
the hydrocarbon cyclohexane, an ingredient used in the manufac-
ture of nylon.

The history of vapor cloud explosions shows that almost
any liquid or gaseous fuel can cause such explosions, given
appropriate time for mixing with the air, appropriate ratios
of fuel to air, and an ignition or explosion source. 1In Strehlow
and Baker (1975), fuels noted as causing serious explosions were
propane, ethylene, propylene, butane, liquid hydrocarbon residues,
and hot cyclohexane. For some fuels, true detonations can occur,
i.e., rapid chemical reactions progressing at rates greater than
sound velocity in the fuel-air cloud. For the vast majority of
accidental vapor cloud explosions, it is unlikely that detonations
have or will occur because this most violent type of reaction
requires fuel-~air mixtures within the rather narrow detonable lim-
its plus a strong ignition source, or a very large cloud in which
a less violent burning or deflagration can build to a detonation.

16

H U B L L U L L L H £ E H B B B B & L



Also, this transition usually requires some confinement. But
detonating fuel-air mixtures are used as weapons [Robinson (1973)1],
and gaseous fuels mixed with oxygen are used as large blast

sources for simulation of nuclear weapons blast [Choromokos
(1972) 7.

Assessment of damage and correlation of the damage with blast
yield has been attempted for some large vapor cloud explosions
[Tucker (1974), Strehlow and Baker (1975)]. Generally, these
estimates show that accidental vapor cloud explosions are almost
invariably much less damaging than the planned vapor detonations
mentioned above. Blast yields seem to have been, at most, 20%
of values estimated on the basis of total heats of combustion of
the fuels involved. This is probably so because not all (perhaps
very little) of the fuel-air cloud has a mixture ratio lying with-
in the detonable range, because no strong ignition sources capable
of starting detonations were present, and because only a deflagra-
tion rather than a detonation occurred. This is of small comfort
to the victims of vapor cloud explosions, but does indicate that
the full potential for damage is probably never realized in an
accident. 1In a way, this conclusion parallels the results of
Project PYRO tests for explosions of liquid propellants, which
are summarized by Baker, et al (1975). 1In those experiments,
blast yields were seldom greater than a few percent of the maximum
potential yield for large-scale experiments.

Because of the great variability in vapor cloud explosions
and the uncertainties noted above, estimation of the blast yield
of vapor cloud explosions can only be very approximate. We
suggest the following procedure:

1) Assume a stoichiometric mixture of the fuel in air and
calculate the total heat of combustion, Ec.

2) Multiply the heat of combustion by some blast effective-
ness factor less than one to obtain estimated blast yield
E. The effectiveness factor can be based on past acci-
dent data and should at present be considered as a ver
crude estimate., Accident data to date indicate that it
should probably never be greater than 20%.

Fuels which are gaseous at normal ambient conditions, but
have vapor densities* greater than one, seem the most potentially
dangerous candidates for vapor cloud explosions because they remain
near the ground surface as they mix with air. Table 1-1 gives
a partial listing of some such common fuels, together with detona-
ble limits (when known), flammable limits expressed as volume
percents in air, and values of E_ from Zabetakis (1965). This
table also contains properties £f6r the two most common fuels
shipped or stored as cryogenics, hydrogen and methane.

*Vapor density is defined as the ratio of the density of the vapor
to that of air at standard temperature and pressure.

17
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Fuels which are gaseous but have low vapor densities (< 1)
under normal ambient conditions seem potentially much less suscep~
tible to vapor cloud explosions, because they rise rapidly as
they mix with air. The two most common such fuels are methane
(natural gas) with a vapor density of 0.55 and hydrogen,
with a vapor density of 0.07. But both of these fuels are very
energetic, and have wide flammability limits, so they cannot be
completely excluded as potential sources for vapor cloud explo-
sions.

By listing or mentioning only a limited number of fuels, we,
of course, do not mean to exclude only liquid or gaseous fuel as
a potential source for vapor cloud explosions. At present, we
also cannot give good guidelines for estimating the effectiveness
factor for converting maximum chemical energy release to blast
yield.

18
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CHAPTER II

CHARACTERISTICS COF PRESSURE WAVES
2-1 General

The characteristics of blast waves from liguid propellant
explosions and spherical gas vessel bursts, and their similarities
and differences compared to waves from condensed high explosives
such as TNT, are discussed at some length by Baker, et al (1975).
Much of the data presented in that reference can be used with no
change to predict blast wave properties for explosions in ground
systems. Here, we supplement that reference with discussions of
later theoretical predictions and experimental results, and give
some additional curves for prediction of blast properties based on
the more recent work. The theory we will present includes some
two~dimensional blast propagation effects for bursting pressure
vessels, while the new test data include measurements of blast
waves from bursting, frangible spheres containing high pressure
gases and a flash-evaporating fluid.

2-2 Two-Dimensional Blast Wave Characteristics

Gases are often stored in tanks under high pressure. When a
pressure vessel bursts, a shock wave propagates away from it.

To estimate the damage and injury from such an explosion, one must
know the side~on overpressure PS and the side-on specific impulse
Is'

In Baker et al (1975), a method is given for calculating side-
on overpressure and specific impulse, P and I_, from a pressure
vessel burst. The flowfield is assumed™to be sSpherical, and the
effects of the container upon the blast wave are ignored. This
treatment is reasonably good for lightweight vessels, e.g., space-
craft tanks. However, for heavy vessels, one must account more
accurately for the effects of the vessel itself.

The following is a method for predicting P_ and I_ from a
spherical pressure vessel burst of a type common in faIlure of
ground-based vessels, with the vessel breaking in half and the two
pieces being propelled in opposite directions. The situation is
shown in Figure 2-1. The analysis is based on the computer program
TUTTI and is discussed in Appendix A.

Briefly, to find the overpressure at a given distance from
the center of the vessel, one calculates a "starting overpressure"
and locates this pressure on a curve on a graph of dimensionless
overpressure versus dimensionless distance, P_ vs R. The nearest

vs R curve is used to find P_ at the given distance. The
sSec1flc impulse is calculated as in Baker, et al (1975).
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The "starting overpressure" is calculated as follows: The
terms

P
pa

and
Yl(MW)aTl
Ya (MW) 1T4

are computed, where p, is pressure, vy is the ratio of specific
heats, (MW) is molecuiar weight, and T is absolute temperature,
The subscript 1 refers to conditions inside the vessel before it
bursts, and a refers to conditions in the surrounding atmosphere.
The point

Py Y (MW ,Ty
52 ' YazMW)lTa

is located on one of the graphs in Figures 2-2, 2-3, or 2-4,

depending on y,. Ps_ is read for the point. The "starting over-
pressure" 1is PA = 0.21 Pso. Figure 2-5 is a graph of Ps vs R,
where
Ps = 5.
a
and
rp 1/3
R= 2 _
E1/3

[c is the distance along the plane of symmetry from the center of
the tank, and the energy in the tank is given by eq. (1-1)1].

On Figure 2-5, the intersection of the constant B_ line (where

P_ = P,) and Curve A is found. This is_the startihg point. The
n€ares® curve or curves give the P_ vs R behavior. For the dis-
tance of interest, calculate R. Ps is then read from the appropri-
ate curve. S

Tg is read from Figure 2-6 or 2-7, whichever is more conveni-
ent.

Isha

1= o 273,173

a
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where A, is the speed of sound in the surrounding atmosphere.

2/3.1/3
IS=TEL}TL
a

P and I are accurate to about t15%. The curves should not
be extFapolated.

 Axis of
sy mmetry

SHOCK SHOCK
WAVE WAVE
Plane of
symmetry

MOVING VESSEL HALVES
FIGURE 2-1. BURST OF A SPHERICAL PRESSURE VESSEL

The computer analysis on which these curves are based does not
extend far enough in time to allow prediction of negative phase
characteristics or second shock characteristics.

Example: 8A spherical vessel containing air (y, = 1l.4) at a
pressure of 10 P_(987.2 atm) and a temperature of 360°F bursts
at sea level. TRe inner vessel radius is 0.19m. Find P, and Ig
at a distance r of 1.14m along the plane of symmetry from the
center of the vessel.

Solution:

987.2

n

ol
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Yl(Mw>aTl
Ya(MW)lTa

Locating this point on Figure 2-2, ﬁso = 11.

Py, = 0.21 PSo = 0.21(11) = 2.3

Next, find the point on Figure 2-5 where Curve A crosses

This is near the third curve from the bottom of the page. This

gives the ﬁs vs R behavior.

P17P, 4 3 108-1.013x10° 6
E = Vl q:l— = T (0.19) 1.4-1 = 7.8 x 10 J
_ rpt? 1.14m(1.013x10°pa)*/3
R = = = 0.27
gl/3 (7.18x108)1/3
For this value of X, B, = 1.8. P_=7F_p, = (1.8) (1.013 X 10°Pa)
= 1.8X10°Pa
o 2/3g1/3
From Figure 2-7, Té = 0.16. Then I, = il _E_K__——— =
a
0.16(1.013x10°)%/3(7.18%10%)1/3 3

= 1.9 X.10~ Pa-s

344 m/s

2-3 Blast Waves from Bursting Frangible Spheres

Two recent experimental studies form the basis for some
additional prediction curves for blast wave properties near burst-
ing pressure spheres. Esparza and Baker, (1977a) and (1977b),
report measurements of blasts from bursting frangible pressure
spheres containing air and argon (1977a), and the refrigerant
Freon 12 as both a compressed liquid and a compressed vapor (1977b).

These measurements, which include side-on pressure-time
data over a range of scaled distances, show that compressed gas

and vapor sphere explosions can generate waves which are distinctly
different from the more familiar waves from condensed explosives.
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A typical pressure-time trace is shown in Fig. 2-8. The distinc~
tive characteristics are the pronounced negative phase compared
to the first positive phase, and the strong second shock wave.

By contrast, waves from condensed explosives show much smaller
negative phases and seldom have a discernible second shock.

To report these blast wave properties, we must define more
parameters than the usual ones. We have chosen the following
ones (see Fig. 2-8).

B
4.00F (+)
+
: I,
2.00 (-)
a TE —P
- i a X 52
7 N
A 0.25 1.00 1.25
- T
2 e TIME, ms
2,000t 8 (-)
-4.00-

FIGURE 2-8. TYPICAL BLAST PRESSURE HISTORY FOR
FRANGIBLE GAS SPHERE BURST

Psl first shock side-on overpressure

Is(+)positive phase impulse for first shock
TS(+)duration of positive impulse for first shock
IS(-)negative phase impulse for first shock
TS(_)duration of negative phase for first shock

P second shock side-on overpressure,

s2
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Prediction curves for scaled values of these parameters are given
here. As in section 2-2, the scaling is given by:

P = P/p,
= _ 2/3,.1/3
I=1Ia p,” " /E
T =T A, pa1/3/El/3 (2~1)
T = R pa1/3/El/3
and blast yield E is defined by
E=E -~ Ek (2-2)
where
vV, (py-pP,)
- _ 11 Fa’ _
T D (2-3)
for perfect gases and
V1
B =g (i m ) (2-4)

for wet vapors or gases near the thermodynamic "vapor dome."*

Figures 2-9 through 2-16 are derived from Esparza and
Baker (1977a) for compressed gases. Blast wave characteristics
were found to be only weakly dependent on specific heat ratio
Yy for gas in the vessels and on initial pressure ratio (pl/pa).

The latter parameter was varied over the range 9.9 < (p;/Pj)

< 42.0 in the tests. Because 0f the weak dependence on these two
parameters, all data are combined for various initial pressure
ratios and ratios of specific heat. The figures show the range
of all test data within the cross-hatched areas, and a "best fit"
solid curve through the data. We suggest that the best fit curve
be used for estimation, but one can use the upper limit curves to
indicate uncertainties in the data.

Figures 2-17 through 2-22 are curves for compressed vapor
for Freon-12 refrigerant, similar to the previous figures for
compressed gases, from Esparza and Baker (1977b). That reference

*Chapter 1 gives methods for calculating the internal energy change
(u;, - u,).
1 2 33

g U K U L LI L L LK B U K& E B O B K L L



10.0 1 T 1T 11 T T T T T 11
= AIR AND ARGON
PRESSURE BURSTS

= = PENTOLITE
HIGH EXPLOSIVE -

i1t 11

| I O I

5.0

|

2.0

1.0

"~ 0.5

0.2

0.1 —
C 11 30l L L1 1 1111
0.3 0.5 1.0 2.0 5.0 10.0

Rp 1/3
ﬁ- a
E‘ll3

FIGURE 2-9. SCALED TIME OF ARRIVAL OF FIRST SHOCK
WAVE FROM BURSTING GAS SPHERES
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shows that blast waves from sudden release of compressed liquid
Freon-12 were almost always so weak that they were essentially
sound waves, and therefore had negligible damaging potential.

No data were taken for the intermediate cases of wet vapor, which
should have intermediate explosion properties between saturated
liquid and saturated vapor.

Some data exist for blast waves generated by bursts of heated,
ductile pressure vessels containing steam as a flash-evaporating
fluid [Baker, et al (1978)] which show that such bursts can indeed
be quite energetic blast sources. Strong vessels containing
varying amounts of water which were heated to steam and burst
at pressures of about 32 MPa generated strong Qlast3waves, with
specific source engrgies as great as 2.31 x 107 J/m” on a volume
basis or 4.04 x 10 J/kg of fluid on a mass basis. The latter 6
figure, when compared to the specific energy for TNT of 4.19 x 10
J/kg, gives a "TNT equivalent" of 0.097 kg TNT/kg H,0. But, the
data are too sparse to generate prediction curves.
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CHAPTER III

EFFECTS OF PRESSURE WAVES

3-1 General

It should be clear from the discussions in earlier chapters
that the pressure (blast) waves from accidental explosions in groun
systems can differ significantly from "classical" blast waves
from condensed explosives. But, the basic methods presented by
Baker, et al (1975) for predicting effects of pressure waves are
independent of the exact character of the explosion source, and
are primarily related to blast wave properties such as peak side-
on overpressure P_ and positive impulse i_, or peak reflected over-
pressure P_ and the corresponding reflectéd impulse ir'

Because of the correlation of the blast effects prediction
methods in Baker, et al (1975) with blast wave properties, all of
the graphs and equations in Chapter III of that reference are
equally applicable for the ground burst accidents which are the
topic of this workbook. Topics covered in Baker, et al (1975)

are:

1) Thresholds for glass breakage.

2) Empirical blast damage estimates for residential build-
ings.

3) Toppling or overturning of vehicles and other objects.

4) Damage thresholds for beam structural elements.

5) Damage predictions for brittle and ductile rectangular
plate elements.

6) Damage thresholds for rectangular membranes.

7) Blast injury estimates for humans.

We will not duplicate any of those prediction methods here, but
will instead give supplementary prediction curves based on fur-
ther damage prediction analyses by our staff.

3-2 Additional Beam Response Predictions

Methods were given in Baker, et al (1975) for prediction of
damage thresholds for beams with various boundary conditions. The
techniques used to obtain that set of prediction curves were based
on assumed rigid-plastic beam behavior, and energy balance methods.
Other prediction curves can be obtained by assuming elastic-plastic
beam behavior, or purely elastic behavior. The curves are given
here, and the procedures used in developing them are given in
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Appendix B.

Figure 3-1 is a nondimensionalized pressure-impulse (P-i)
diagram for determining the maximum strain and deflection in
beams loaded by a blast wave. The blast wave is characterized
by its peak applied pressure P and impulse i. These pressures and
impulses are either side-on or reflected ones dependent upon the
orientation of the building relative to the enveloping wave. In
this graphical solution, we assume that the loading is uniform
over the entire span of length %&. The beam has a loaded width
b, a mass density p, a cross-sectional area A, a total depth H,
an elastic modulus E, a yield point o_, a second moment of area I,
and a plastic (not elastic) section mddulus Z.

Different boundary conditions can be evaluated by inserting
the appropriate nondimensional numbers, i.e., the appropriate V
coefficients from the table in Figure 3-1. Simply-supported,
clamped-clamped, clamped-pinned, and cantilever beams are all
included in this graphical solution. No strain energy is ab-
sorbed in extensional or shear behavior. This solution is entire-
ly a bending one. Any self-consistent set of units can be used
because this solution is nondimensional. =

As an illustration of how Figure 3-1 may be applied, consider
a 12H5 as a joist in a flat roof.* The joist will have 4-ft
centers and be a simply-supported beam with a 20-ft span. The
weight of the concrete and insglation being supported by this joist
is assumed to equal 30.2 1lb/ft“. The joist is made of steel
with a ygight density of 0.283 1b/in~, an elastic modulus of
30 x 10 psi, and a yield stress of 33,000 psi. The AISC hand-
book gives a weight per length of 7.1 1lb/ft, a maximum moment
based on a 30,000-psi yield of 222 in-kips, and a depth of 12.0
inches. These propertiei indicate that the second moment of area
equals Mh/20, or 44.4 in°, and that the elastic section modulus
is 2I/h, or 7.4 in~. We will assume that the plastic section
modulus Z equals the elastic section modulus in a beam with this
shape. 1In a simply-supported beam, the ¥ _ number equals 10.0,
¥, equals 0.913, and WE equals 1.25.

Next the nondimensional quantities

Pby 2
Y 0.2
PY

and

*English units are used in this and some subsequent examples be-
cause all of the handbook properties of structural steel members
are given in these units, and they are the common units used by
structural designers.
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ibvET
Y. /oA 02

1 b4

must be computed for some given input pressure and impulse. Let

us assume that these values are P = 1.42 psi and i = 0.0145 psi-sec.

Substituting P = 1.42 psi, b = 48 in., & = 240 in., ¥_=10.0,
o, = 33,000 psi, and Z = 7.4 in” gives a scaled pressgre of 1.61
£8r the gquantity

Before the quantity

can be determined, multiplying and dividing by vg, the square root
of the acceleration of gravity, simplifies computations by forming
the quantity

ib /ET vg
Y vpg oyZ

>

The quantity (pgA) is the weight per unit length for both the

beam and the roof that it supports. Because of the 2.0-ft centers,
the quantity (pgA) equals {(30.2 x 4) + 7.1} 1/12, or 10+g6 1b/in.
Substituting i = 0.0145 psi~sec, b = 48 in., E = 30 x 10 '

I =144.4, g = 386 in/sec, ¥, = 0.913, pgA = 10.66, o = 33,000 psi,
and 2 = 7.4 gives a scaled impulse of 0.685 for the guantity

ib BT vg
Y. /pgA oyZ )

1

Now Figure 3-1 can be entered to determine the scaled strain for
this loading. The scaled strain

I1E Emax

Y HZo
€
equals 0.33. The strain €m is found to equal 907 ue after sub-
stituting 44.4 for I, 30 x 10+6 for E, 33,000 for o, 7.4 for z,

12 for H, and 1.25 for ¥_. This strain is elastic 3%nd corresponds
to a stress of about 27,200 psi.
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Figure 3-2 is a corresponding bending beam solution for elas-
tic response only. The major added benefit derived from Figure 3-2
is that it can be used to estimate the shear forces at the supports.
For a Bernoulli-Euler beam, a plastically responding beam has no
shear force at the instant of maximum deformation, as

dM _
E—Oc

Obviously, a maximum shear is reached earlier in the response
which is not handled by an energy solution. An energy solution
only handles end states; it never yields a transient solution.
For an elastic solution, a maximum shear force V is reached when
the beam is in its maximum elastically deformed position. Pro-
vided the response is elastic, Figure 3-~2 essentially yields

the same solution as an elastically responding beam from the more
generalized Figure 3-1 solution.

We will illustrate the use of Figure 3-2 with the same 12H5
roof joint exposed to the same 1.42 psi and 0.0145 psi-sec
pressure-impulse blast loading as in the previous example. The
elastic scaled pressure and impulse quantities which must be
calculated are

2 .
PbHZ ibH
o ET and o; 7PEIR

Once again multiply and divide the scaled impulse by gl/2 to form

ibH vg
a, v(pgA)EI

1

which takes advantage of the weight per unit length quantity

(pgA). Substituting as before, P =+%.42 psi, b = 48 in., g =12 in.,

L = 240 ig3, ap = 8.00, E = 30 x 10 psi, and I = 44.4 in” gives
4.42 x 10 for the scaled pressure quantity

PbHLZ

a ET
P
Substituting i = 0.0145 psi-sec, b = 48 in.,, H = 12 in.,+g =
386 in/sec,4ai = 1.461, (pgA),= 10.66 1b/in, E = 30 x 10 ~, and
I = 44.4 in’~ Gives 9.43 x 10 for the scaled impulse quantity

1/2

ibH
oy JpAg EI °
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The coefficients differ in Figures 3~1 and 3-2; however, the
appropriate values are provided in tabular inserts. Entering
Figure 3-2 for this specific combination of scaled pressure and
scaled impulse gives a scaled stress

o
max +3
( 5 x 10 )

of approximately 1.0 after extrapolating. After substituting

for E, this calculation indicates that the maximum stress caused
by the air blast wave is approximately 30,000 psi. This answer is
identical, within the limits of graphical accuracy, to the 27,200
psi stress found using Figure 3-1. 1In addition, the shear force
at the support caused by this dynamic load can also be determined.
The equations in the upper left hand corner of Figure 3-2 permit
the maximum elastic deformation w_ and the shear force at the
supports to be determined after o has been computed. The
coefficients C_ and C,, also found>¥n the table accompanying
Figure 3-2, depend upon the boundary conditions. For a simply-
supported biam, C, = 8.0. Substituting C, = 8.0, ¢ .= 30,000 psi,
I = 44.4 in%, % =Y240 in., and H = 12 in. gives 3,788%1bs for

the maximum elastic shear force caused by the blast load.

Whenever a member undergoes large deformations relative to
its thickness, the principal mode of energy dissipation is ex-
tensional rather than bending. Figure 3-3 presents an elastic-
plastic, one-dimensional, extensional solution. An extensional
solution assumes that the ends are constrained from moving to-
gether so that in-plane forces can be developed. The results
presented in Figure 3-3 are very similar to the previously presen-
ted bending solution in that contours of constant scaled strain
are presented on a plot of scaled applied impulse and pressure.
All loads are assumed to be uniformly distributed over the member
being loaded. After the strain has been determined, the maximum
deformation, the slope at the boundaries, and the magnitude of the
anchoring force can all be determined using Figure 3-3.

The symbols in Figure 3-3 are very similar to those used
previously. The one new symbol is A, the cross-sectional area
of the member. Other symbols include the applied reflected or
side-on overpressure P, the applied reflected or side-on impulse
i, the loaded width b, the total span £, the mass density p, the
elastic modulus E, the yield point o "the maximum strain ¢ ;

’
. : . X
the maximum deformation W and the Haximum slope ma
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Any self-consistent set of units can be used, as all scaled
quantities are nondimensional.

We will illustrate the use of Figure 3~3 by evaluating wall
siding. Let us assume normally reflected pressure of 3.0 psi,
and a normally reflected impulse of 30.0 psi-ms. Most siding is
corrugated so one direction is much stiffer than its orthogonal
counterpart. This observation means we can use a strip theory
for estimating the response. If we have a steel siding with a
yield point of 33,900 psi, a cross-sectional area per inch of
width of 0.062521n /in, a weight per inch width and per inch length
of 0.0236 1b/in“, and a span of 156 in., then the scaled pressure
can be presented in the format

pre’/?

0372(A/b)

which equals

+6)l/2

(3.00) (156) (30 x 10 — , or 6.84.

(33,000) 32 (0.0625)

1/2

The scaled impulse should be multiplied and divided to g to

form

1gl/241/2

(bst) o)

172 '

which equals

+6)l/2 2

(0.030) (30 x 10 (386) 1/

— or 2.55.
(0.0236)1/2(33,000) (0.0625) /2 °

Entering Figure 3-3 for these values of scaled pressure and impulse
gives a scaled strain

Eemax

g
Y

of approximately 4.0. Because

o
4
E
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is the yield strain, this calculation predicts a maximum strain of
4.0 times the yield strain. The maximum in-plane stress at the
support will equal 33,000 psi because the member has yielded. This
stress will act at an angle of

\/2(4) 33,000+
30 x 10

6

or 0.0938 radians, according to the formula for the maximum slope
in Figure 3-3. Because the in-plane stress and line of action
are known, fasteners for attaching this wall could be selected
and appropriately spaced,

3-3 Buckling of Axially-Loaded Members

Figure 3-4 shows a scaled pressure-impulse diagram for buckling
of an axially loaded elastic column. Different boundary conditions
and whether or not side-sway can occur is accounted for in the
o, and a, coefficients associated with pressure and impulse. The
s81id lifie in Figure 3-4 is the threshold separating unstable
column response from stable. If the nondimensionalized loads
imparted to a column establish a point which is to the left and/or
below the threshold line, then the column should remain stable.

On the other hand, should these nondimensionalized loads establish
a point above and to the right of the threshold, large permanent,
unstable deformation should be expected. 1In developing this solu-
tion, energy procedures were once again applied. The major new
parameter is the mass (not weight) of the overlying floor M. We
assume that the mass of the column is insignificant relative to
the mass of the rigid floor above. The parameters ¢, E, I, o,
and H all pertain to the total span, modulus of elasticity, s&cond
moment of area, yield point, and total depth of the column itself.
The parameter A is the loaded area of the roof or floor over the
column. All influence of dead weight effects is ignored in this
solution; they are assumed to be insignificant relative to the
dynamic loads from the applied blast wave.

As an illustrative example, consider a W10 x 49 with a 150-in.
span acting as a clamped-clamped column that might undergo side-
sway. The second moment of area equals 93.0 in , and the depth
is 10.0 in. about the minor axis of this column. We will assume
a 33,000 psi yield strength, a 238 by 240 in. loaded area over
each column, and an 0.2285 1b/in“ weight per unit area for the
overlying roof. The side-on pressure applied to the roof is
1.42 psi, and the side-on impulse is 0.0145 psi-sec. From the
table inserted into Figure 3-4, we learn that the o. coefficient
equals 1.41, and the a_ coefficient equals 9.87 for a clamped-
clamped column undergoEng side-sway. Substituting these values
into the scaled pressure parameter
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=
[

gives

(1.42) (288 x 240) (150) °
(9.87) (30 x 107%) (93.0)

or 0.0802. The scaled impulse parameter

iaH vE
a, YMIT I

i
gives

(0.0145) (288 x 240) (10) (30 x 10%6)1/2

1.41v 0:02282 % 288 x 240 (150) (93) (33,000)

or 1.56. Because this combination of loads plots below the scaled
pressure asymptote of 1.0, the column should be stable.
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CHAPTER IV

CHARACTERISTICS OF FRAGMENTS

4-]1 General

In Baker, et al (1975), there was extensive coverage of such
characteristics of fragments from flight-weight vehicles as
initial velocities, size and mass distributions, fragment trajec-
tories, and the distances or ranges the fragments travelled. The
data and prediction methods given in that reference were based on
accident reports and tests with liquid propellant explosions and
lightweight gas vessel bursts, development and exercise of a
variety of special-purpose computer programs, and statistical
analysis of test and accident data.

Accidental explosions in ground systems tend to produce very
different types of fragments or missiles than do similar explo-
sions in flight-weight systems. The most striking difference
lies in the number of fragments generated, with the number usual-
ly being much less for the ground systems than for flight systems.
This difference 1s primarily a function of the differences in
storage or pressure vessel materials and construction. Rela-
tively thick-walled vessels, made of ductile steels, dominate in
ground storage and transport systems. These vessels often split,
or fragment into only two pieces, after failure. Accidental ex-
plosions which generate more than a dozen vessel fragments are
quite uncommon. For storage or transport vessels containing
flash-evaporating liquids such as propane (LPG), a common failure
mode is an asymmetric burst of a long cylindrical vessel, with
the major part remaining intact and "rocketing" as the fluid ex-
hausts and flashes. Accident reports of such failures show that
the vessel can travel great distances, and of course cause a
major hazard where they impact.

In this chapter, we present the results of studies on the
characteristics of fragments from ground vessel explosions, and
highlight the differences from fragmentation of flight-weight
vehicles. As before, a survey and statistical analysis of
accident data is included; several new computer programs were
developed and exercised; and prediction curves on methods
generated for various characteristics of the relatively large and
massive fragments generated in accidental explosions in ground
systems are presented.
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4-2 Analytical Predictions of Fragment Velocity Distributions

Estimates of Initial Velocities of Fragments from Bursting
Spheres and Cylinders

Equal Fragments

The method developed by Taylor and Price (1971) and
modified by Baker, et al (1975) for calculating velocities of
fragments from bursting spherical and cylindrical pressure vessels
was used to provide velocities of various fragments which could be
plotted in some form of prediction curve. The model analyses for
reducing and analyzing the data and the results of these analyses
are explained in Appendix C. The development of the necessary
equations, the numerical iteration method used to simultaneously
solve the differential equations and the computer programs can be
found in Appendix IV A and Appendix IV C of Baker, et al (1975)
(see microfiche). The only assumptions included here are those
needed to determine fragment velocities.

The basic assumptions are:

1) The vessel with gas under pressure bursts into equal
fragments. If there are only two fragments, and the
vessel is cylindrical, the vessel bursts perpendicular
to its axis of symmetry. If there are more than two
fragments, and the vessel is cylindrical, strip frag-
ments (end caps are ignored) are formed and expand
radially about the axis of symmetry (see Figure 4-1).

2) The cylindrical containment vessel has hemispherical
end caps. (These are ignored when the vessel bursts
into multiple fragments.)

3) The thickness of the containment vessel is uniform.

4) Vessels have a length-to-diameter (L/D) ratio of 10.0
for cylinders or 1.0 for spheres.

5) Contained gases are either hydrogen (H2), air, argon
(Ar), helium (He) or carbon dioxide (C02).

Figure 4-2 contains plots of the velocity term versus
the pressure term for two fragments, ten fragments and one hun-
dred fragments from spherical or cylindrical vessels. Three
separate regions have been bounded to account for scatter:

(1) cylindrical vessels bursting into multiple fragments;

(2) spherical vessels bursting in half or multiple fragments and
(3) cylindrical vessels bursting into two fragments. Estimates
of the initial velocities of cylinders and spheres can be ex-
tracted from the nondimensional terms read directly from the
appropriate bounded regions on the graph. The two nondimensional
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terms in Figure 4-2 are:

1) Nondimensional pressure term

_ (P-pa)vO (P-pa)Vo _

M YR T y) =
C m o MC agas

(pressure - atm. pressure) (Volume)

2
(Mass of container) (sound speed of the gas)

2) Nondimensional velocity term

u u (velocity)

K/;ﬁ;fg Kagas (constant) (sound speed of the gas)

where K equals 1.0 for equal fragments.

The technique for predicting initial fragment veloci-
ties for spherical or cylindrical pressure vessels bursting into
equal fragments requires knowledge of the internal pressure P,
internal volume V,, mass of the container M., ratio of specific
heats y, ideal gas constant adjusted for the gas Ry, and the
temperature of the gas T,, at burst. Table 4-1 contains the
corresponding y's and R,'s for the gases for which this analysis
is appropriate.

In summary, in order to estimate the initial velocity of
fragments from pressurized spheres and cylinders which burst into
equal fragments, one should use the following procedures:

Step 1. Calculate the nondimensional pressure term

(P—po)Vo
M YR T
c mo
Step 2. Locate the corresponding value of the nondi-
mensional velocity term u and solve for
KVYRmTO

velocity u (Note: K = 1.0 for equal fragments)

Note: Axes of Figure 4-2 are nondimensional terms and
merely require that one use a self-consistent
set of units.
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TABLE 4-1. SUMMARY OF RATIOS OF SPECIFIC HEAT AND
IDEAL GAS CONSTANTS FOR DIFFERENT GASES

Ideal Gas Constant R

Ratio of Specific ———%E—— ——E%E——)
Gas Heats vy sec” " °K sec .°R

Hydrogen 1.4 4124 3.551X10°
Air 1.4 287.0 2.471x10°
Argon 1.67 208.1 1.792x10°
Helium 1.67 2078 1.789X106
Carbon Dioxide 1.225 188.9 1.627x10°
Example 1:

Determine the initial velocity of a fragment from a pres-
surized sphere containing hydrogen gas which bursts in half.
The following properties may be assumed:

10 X 10° Pa(1464.7 psi)

P =

v, o= 0.03m> (1830 in>)

M_ = 17.13Kg (37.76 1bs)
— o

T 300°K

From Table 4-1 v = 1.4

2 .2
Rp = 4124 —"»— (3.551 X 10° =)
sec - °K sec” - °R

Step 1. Nondimensional pressure term =

(P-p )V, _ (10 x 105 (0.03) _ 0.0l011
MYR T~ T17.13) (I.4) (4124) (3007 _ °°

Step 2. Since the sphere bursts in half, XK = 1.0. From

Figure 4-2 u = .071 and solving for u re-
KYYR_T
m o
sults in an initial velocity of 93.44 m/sec (306.6
ft/sec).
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Program SPHERE [See Chapter IV, Baker, et al (1975) (micro-
fiche)] results show the initial velocity to be 94.92 m/sec
(311.4 ft/sec).

94.92-93.44

Y ER) X 100 = 1.6%

Percent Error =

Example 2:

Determine the initial velocity of a fragment from a pres-
surized cylindrical vessel containing argon which bursts into
50 equal fragments. Assume the following properties:

6

P = 1.5 X 10" Pa(217.7 psi)
v, o= 0.03m> (1830 in>)
M_ = 3.21Kg (7.07 1bs)
- °
T, 700°K

From Table 4-1 vy = 1.67

2 .2

_ m 5 in
Rm = 208.1 ———7—:— (1.792 X 10 —————:—)
sec -°K sec” - °R

Step 1. Nondimensional pressure term =

(P-p,) Vg (1.4x10%) (0.03)

= = 0.0538
MCvaTo (3.21) (1.67) (208.;) (700)

Step 2. Since the cylinder bursts into 50 equal fragments,
K = 1.0. From Figure 4-2, u = 0.3 and solving

KVyRmTo
for u results in an initial velocity of 148 m/sec
(485 ft/sec).
Program SPHERE results show the initial velocity to be 149.2
m/s (489.4 ft/sec).

_ 149.2-148 _
Percent error = —-ngff—— X 100 = 0.80%
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Cylinders with Length-to-Diameter Ratio of 10.0 Bursting
into two Unequal Fragments

The Taylor and Price (1971) method modified by Baker, et al
(1975) for calculating velocities of fragments from bursting
spherical and cylindrical gas vessels has been expanded to provide
initial velocities of unequal fragments from cylindrical vessels.
The development of the necessary equations and the subsequent com-
puter program UNQL are explained in depth in Appendix D. The
assumptions essential to the velocity calculations follow:

1) The vessel with gas under pressure breaks into two un-
equal fragments along a plane perpendicular to the
cylindrical axis, and the two container fragments are
driven in opposite directions (see Figure 4-3).

2) The containment vessel is cylindrical and has hemi-
spherical end caps.

3) The thickness of the containment vessel is uniform.

4) Vessels have a length-to-diameter (L/D) ratio of 10.0.

5) Contained gases are either hydrogen (Hp), air, argon

(Ar), helium (He) or carbon dioxide (CO32).

The technique for predicting initial fragment velocities for
fragments from a cylinder (L/D = 10.0) which breaks into two
unequal fragments perpendicular to its axis of symmetry is identi-
cal to that for equal fragments except for the value of the con-
stant K. The value of K depends on the ratio of the fragment mass
to the total mass of the cylinder as shown in Figure 4-4. To
estimate the initial velocity of a fragment from a pressurized
cylinder (L/D = 10.0) which bursts into unequal fragments, one
should use the following procedures:

Step 1. Calculate the nondimensional pressure term

(P-p )V
MCYRmTO
Step 2. Locate the corresponding value of the nondimensional
velocity term u in the region bounded for
KvyR_ T
m o

n = 2 (cylindrical vessels).
Step 3. Determine the value of K from Figure 4-4.

Step 4. Solve for velocity u.
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FIGURE 4-3. ASSUMED BREAKUP INTO TWO UNEQUAL FRAGMENTS
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Note: Axes of Figure 4-2 are nondimensional terms and
merely require that one use a self-consistent set of

units.

Example 1:

Determine the initial velocity of a fragment from a pres-
surized cylindrical vessel containing carbon dioxide which
bursts into two unequal fragments. Assume the following

properties:
P = 69 x 10° ra (10,010 psi)
v, o= 30.0m> (1.83 x 105 in3)
M_ = 1.92 X 10°kg (4.23 X 10° 1bs)
= o
T 500°K
From Table 4-1, y = 1.225
2 .2
R = 188.9 —C-— (1.627 X 10° -
sec” - °K sec”*°R

Fraction of the total mass for fragment under consideration
= 0.75.

Step 1. Nondimensional pressure term =

(P-py) Vg _ (68.9 x 10°) (30.0) ~ 0.093
MevBmTo  (1.92 x 10°) (1.225) (188.9) (500)
Step 2. The corresponding value of u = 0.13
KVyRmTO

Step 3. From Figure 4-4, K = 0.61.

Step 4. Solving for u gives an initial velocity of 27 m/s
(88 ft/sec).

Program UNQL results (Appendix D) show the initial velocity
to be 26.5 m/s (86.9 ft/sec).

Percent error = EZ%%§§§ X 100 = 1.9%
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4-3 Analytic Predictions of Fragment Trajectories, Ranges and
Impact Conditions

Predicting Ranges of Free-Flying Fragments

The range of a flying fragment from a bursting container is
dependent on the 1lift and drag forces acting on the fragment.
Two types of fragment cases were studied in this analysis:
(1) fragments whose geometry is such that both the lift and drag
forces act on them during flight, i.e., disc-shaped fragments and
long, thin fragments; and (2) fragments whose geometry is such
that only the drag forces act and there is no lift. A method of
predicting the distance traveledby a fragment was developed and
computerized (Code FRISB) by Baker, et al (1975) and this section
expands on their efforts. ) _

A set of generalized curves (Figure 4-5) was developed for
use in estimating the maximum fragment range. These curves were
developed by performing a model analysis to generate dimension-
less parameters which describe the general problem (Appendix E),
next using the computer code FRISB to determine ranges for
selected cases, and then plotting the results to form the curves.
It should be noted that, in generating these curves, several
initial trajectory angles were used in the analysis to obtain the
maximum range for the respective fragments. For ease in under-
standing the use of these curves, the example which follows is
presented. The procedure for determining fragment range is:

C.A
Step 1. Calculate the lift/drag ratio = ELKE for the frag-
ment. DD
P oCpApV?
Step 2. Calculate the velocity term = __?ET___ for the frag-

ment.

Step 3. Select the curve on the graph for the appropriate
lift/drag ratio; locate the velocity term on the
horizontal axis; find the corresponding range term,

poCDADR
— and determine the range, R.
CLAL
Note that, for lift to drag ratios A that are not on the
D'D

curve, a linear interpolation procedure can be used to determine
the range from the curve. Interpolation in the steep areas of

the curve can cause considerable error and it is recommended that,
for these cases, the computer code FRISB be exercised.

FRISB example: Assume Py = density of air = 1.293 E%
m

g gravity constant = 9.807 m/s2
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Example 1, for lifting fragments:

Determine the maximum range of a long rectangular fragment
assuming the following properties: Vy = 100 m/s (328 ft/
sec), Mass = 30.827 kg (67.96 1b,) , Projected area =
0.03018m2 (0.3249 ft2), Cylinder length = 1.58m (5.18 ft),
Thickness of fragmens = 0.0191m (0.0627 ft), Planform or
lift area = 0.20623m (2.2198 ftz), Drag coefficient = 2.05,
lift coefficient = 0.3, and the initial trajectory of the
fragment at t = 0 was a; = 20°,

Step 1. Determine the lift/drag ratio for the fragment =

“LL _ (0.3) (0.20623)

Cpp (2.05) (0.03018)

= 1.0

Step 2. Determine the value of the velocity term =

2
200" | (1.293) (2.05) (0.03018) (100)2 _ 2 65
Mg (30.827) (9.807) )
Step 3. From Figure 4-5 pocDADR = 1.65 and solving for R
M

results in a range of 635.8 meters (2086 ft).
Program FRISB results show the maximum range to be 633.43m
(2078 ft).

_ 635.8-633.43 _
Percent error = €33.43 X 100 = 0.37%

Predicting Ranges of Rocketing Fragments

In an accident involving propellant (propane, butane, etc.)
storage systems, large fragments (greater than one-fourth of the
vessel), which travel long distances, are sometimes generated.
These large fragments are typically sections of the tank which
break free intact and initially contain some entrapped propellant.
These large fragments exhibit a rocketing behavior (see Appendix
E) which results from the changing of all or part of the liquid
propellant into a gas when the external pressure is released
during the fracturing of the vessel (flash evaporation). The gas
escapes from the opening in the vessel in a manner similar to gas
exiting a rocket motor and propels the somewhat stabilized frag-
ment to great distances.

The physics of this process is explained in greater detail
in Appendix F. This appendix also contains a computer program
for predicting the range and impact velocity of the rocketing
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fragment. As explained in the model analysis in Appendix G, this
phencmenon is not readily adaptable to consolidated prediction
curves and requires some further development effort in this area.
Therefore, for the present, in order to predict the distance
traveled by "thrusting" fragments, one must either run the com-
puter program in Appendix F or acquire the values from Table 4-2,
(see Appendix G, p. 7) if the storage tanks and fragments being
examined have characteristics similar to the vessels and frag-
ments contained in the table. Table 4-2 was generated for com-
parison to some accident reports. Calculated values for fragment
ranges were in good agreement with actual values, considering
limitations in available information. In general, rocketing
fragments from accidents of this type have low launch angles (5-
10 degrees). To determine range, or impact velocity, of rocket-
ing fragments (see Table 4-2 and/or Appendix F), one needs to
know the pressure of the fluid at rupture, the volume of the con-
tainer, the volume partially enclosed by the fragment, the volume
of the liquid before rupture, the volume of the vapor before
rupture, the exit area for the propellant contained in the frag-
ment, the mass of the fragment, and the launch angle of the
fragment.

4-4 Statistical Analysis of Fragments

Statistical Analysis of Accidental Explosions

Introduction

Data were gathered on twenty~five events. A detailed
description of these events, in terms of the explosive source
and the containment vessel, is given in Table H-1 in Appendix H.
Table H-2 in Appendix H gives available fragment information
(mass, range, trajectory elevation and shape) for each event.

Due to the limited amount of data on most of the events,
it was desirable to group the data from like events in order to
yield an adequate base for meaningful statistical analysis. From
Tables H-1 and H-2, the six groups of like events shown in Table
4-3 were obtained. Statistical analyses were performed on data
from each of the groups to yield (as the data permitted) esti-
mates of fragment range distribution, fragment mass distribution
and fragment mean velocity as a function of the ratio of explo-
sion energy to vessel weight. Other relationships were also
investigated and the results are given in the following para-
graphs. }

Fragment Range Distribution

As shown in Appendix H-2, the fragment range for each
of the groups of events follows a log normal distribution. That
is, the logarithms of the fragment ranges follow a normal or
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Gaussian distribution. Figure 4-6 presents the fragment range
distributions for groups 1 and 2, and Figure 4-7 presents the
fragment range distributions for groups 3, 4, 5 and 6.

Figures 4-6 and 4-7 can be used to estimate the per-
centage of fragments which will have a range, Ri, equal to or
less than a particular range.

For example, if we wished to estimate the percentage of
fragments which would have a range equal to or less than 600 m for
an explosion involving a rail tank car filled with propane (group
1), we would refer to Figure 4-6, and on the range axis (abscissa)
at 600 m go upward to the intersection of the group 1 line. Then,
at the intersection point read the percentage value from the
ordinate, which is 96%. Conversely, if we wanted to know what
range 90% of the fragments would not exceed, we would enter the
chart on the 90% line, go over to the intersection of the group 1
line and read downward to the range axis the value of 380 m.

Fragment Mass Distribution

Pertinent fragment mass information was available on
three event groups (2, 3 and 6). As shown in Appendix H-3, the
fragment mass for each of the three groups follows a log normal
distribution. Figure 4-8 presents the fragment mass distributions
for groups 2 and 3, and Figure 4-9 presents the fragment mass
distribution for group 6.

These charts can be used in the same manner as Figures
4-6 and 4-7 are used for fragment range.

Mean Fragment Mass as a Function of Normalized Yield

In events 21, 22 and 23, spherical containers were pres-
surized until rupture. The spheres were constructed of steel with
an approximate ultimate stress (oy) of 834 MPa. The spheres were
the same volume for all three events. The wall thickness of the
spheres was the same within events, but was different across
events.

Pertinent data and calculated parameters for each of
the spheres are given in Table 4-4, where W is the geometric
mean fragment mass for each event, W(T) is the sphere weight for
each event, P is the average burst pressure for each event, and
E, 1s the energy of detonation of 1 gram of TNT or 4190J.

Figure 4-10 is a plot of the normalized yield (PV/Eg)
versus mean fragment mass (W) for the three events. One could
estimate the mean (geometric) fragment mass for any decided ratio
of PV/E, from 693 to 2347.
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The correlation coefficient, r, for the regression egqua-
tion shown on Figure 4-10 was 0.9999, which indicates a high
degree of correlation between PV/E5 and W.

Correlation Between Fragment Range and Fragment Mass
Within Event Groups

Only three event groups (2, 3 and 6) contained suffi-
cient fragment range and mass data for correlation analysis.
Various curve fitting techniques were employed to determine if a
predictable relationship existed between fragment range and mass
as indicated by the data on the three events. Appendix H-4 con-
tains a description of the techniques and the results.

Figure 4-11 depicts the relationship of the fragment
range to fragment mass for Group 2. The correlation coefficient
is 0.79.

Figure 4-12 shows the relationship of the fragment range
to fragment mass for Group 6. The correlation coefficient is
0.68.

Correlation of Fragment Range to the Ratio of Mean Frag-
ment Weight to Vessel Weight for Cylindrical Tanks

Five events contained sufficient information for this
type of analysis. Data for each of the events are contained in
Appendix H-5. Figure 4-13 1is a plot of the mean (arithmetic)
fragment weight versus the ratio of mean fragment weight ‘to the
vessel weight for the events.

From Figure 4-13, one could estimate the mean fragment
range for any decided ratio of mean fragment weight to vessel
weight for the types of tanks in the events.

Correlation of Fragment Velocity to the Ratio of Energy
to Vessel Weight

Only in event group 5 were there reports of mean velo-
city for fragments. Figure 4-14 is a plot of the relationship
between the mean fragment velocity and the ratio of the energy
to vessel weight. The velocities were chosen as the maximum
velocity reported within an event for events 21, 22 and 23 (see
Table 4-4). The correlation coefficient for the regression
equation is 0.93.

One could use Figure 4-14 to predict the average velo-
city for fragments from bursting steel spheres over a r§nge of an
energy to vessel weight ratio of 4.5 X 10/ to 6.05 X 10’. How-
ever, the analytic predictions for fragment velocity presented
earlier in this chapter are more useful because they cover a
much wider range of bursting vessel conditions.
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CHAPTER V

EFFECTS OF FRAGMENTS AND RELATED TOPICS

5-1 General

In Chapter V of Baker, et al (1975), some methods were given
for prediction of effects of impact of typical fragments from
accidental explosions involving flight-weight hardware. For the
even more massive fragments typical of explosions in ground sys-
tems, the voluminous literature on terminal effects of military
fragments and projectiles is of very little use. But, since the
earlier workbook was prepared, some data and prediction methods
have been developed related to impact effects of tornado-borne
missiles. Generally, this class of missile lies within the range
of masses and velocities shown in Chapter IV for fragments from
explosions in ground systems. Wooden poles and planks, pipes,
pieces of steel reinforcing bar, and more massive bodies such as
compact cars and entire storage tanks have been picked up and
hurled at damaging velocities by tornadoes. Much of this work is
summarized in Peterson (1976), and has its impetus in tornado-
proof design requirements for nuclear plants.

Similarly, new nuclear plants must now be designed to be
proof against other accidents including crash of aircraft on the
containment structures, and external vapor-cloud explosions.

Some preliminary design methods have evolved for massive, non-
penetrating missile impacts to meet the aircraft crash design
requirements. Typical of recent literature references to this
problem are Drittler and Gruner (1976 a and b) Hammel (1976), and
Degen, et al (1976). But in spite of these recent additions to
the literature, we feel that impact effects of quite massive, but
crushable, missiles are not well enough known to be reduced to
design graphs in this workbook.

In Baker, et al (1975), methods were given to predict velo-
cities of fragments and objects located near accidental explo-
sions (appurtenances). In preparing this workbook, we were asked
to consider modifying these procedures to account for the two-
dimensional character of some accident blast waves. Although we
have generated some graphs for the prediction of two-dimensional
blast wave properties in Chapter II, these are not extensive
enough to allow modification of the previous procedures. We
suggest that at present the reader simply use the procedures in
the previous workbook.

In certain fixed ground installations having a high potential
for accidental explosion, or limited real estate, barricades may

be built in an attempt to attenuate blast waves and to reduce
fragment hazards. The barricades may be earth berms, retaining
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walls backed by earth fill, or built-up walls of reinforced con-
crete, timber, or steel construction. Unless structures to be
protected are located very close to the barricades, they are al-
most totally ineffective in attentuating blast waves. The waves
simply diffract over the barricades and reform. Barricades are,
however, quite effective in arresting fragments and may be worth
constructing for that purpose alone. We will give some predic-
tion graphs for blast attentuation for barricades of several
forms located close to protected structures. No data or proven
prediction methods exist for effects of barricades on non-ideal
blast waves, so the predictions will be limited to attentuations
for condensed high explosives.

5-2 Penetration Effects of Massive Missiles

Some prediction methods of penetrating effects of massive
missiles can be added to the methods in Baker, et al (1975). The
"targets" for these missiles are primarily reinforced concrete or
steel plate panels or walls.

Concrete Panels

Concrete containment walls are very likely to be struck by
fragments generated by an accidental explosion. Unfortunately,
analytical prediction of penetration phenomena is in many ways
more difficult for concrete than for homogeneous materials. This
is due to the inhomogeneity of the panels and to the different
construction technigues in use today--prestressing and post-
tensioning, for example. In addition, since concrete targets are
so expensive to fabricate, the amount of extant test data is
limited.

Figure 5-1 shows schematically three different mechanisms of
missile impact damage. At low velocities, the missile strikes the
panel and rebounds without causing any local damage. As the
velocity increases, pieces of concrete are spalled (ejected) off
of the front or impacted face of the target. This spalling forms
a spall crater that extends over a substantially greater area than
the cross-sectional area of the striking missile. As the velocity
continues to increase, the missile will penetrate the target to
depths beyond the depth of the spall crater, forming a cylindri-
cal penetration hole with a diameter only slightly greater than
the missile diameter. As the penetration depth increases, the
missile will stick to the concrete target rather than rebounding.
At this stage the impact meets the criterion of a “"plastic"
impact. However, even at lesser penetration depths the impact
can be approximately treated as a plastic impact when determining
the energy absorbed by the impacted target. Further increases in
velocity produce cracking of the concrete on the back surface
followed by scabbing (ejection) of concrete from this rear sur-
face. The zone of scabbing will generally be much wider, but not
as deep as the front face spall crater. One scabbing begins, the
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depth of penetration will increase rapidly. For low barrier
thickness to missile diameter ratios (less than 5), the pieces of
scabbed concrete can be large in size and have substantial velo-
cities. As the missile velocity increases further, perforation
of the target will occur as the penetration hole extends through
to the scabbing crater. Still higher velocities will cause the
missile to exit from the rear face of the target.

FRONT-FACE BACK FACE
SPALLING SCABBING

(a) Missile penetration (b) Target spalling (c¢) Missile perforation
and spalling and scabbing

Figure 5-1. Missile Impact Damage [Kennedy (1976)]

Upon plastic impact, portions of the total kinetic energy of
the impacting missile are converted to strain energy associated
with deformability of the missile, and energy losses associated
with target penetration. The remainder of the energy is absorbed
or inputted to the impact target. This absorbed energy results
in overall target response that includes flexural deformation of
the target barrier and deformation of its supporting structure.

Currently depth of penetration, perforation and scabbing
thickness are being predicted using one of several empirical
formulas. These equations are based on experiments conducted
prior to 1946 for concrete slabs perforated by projectiles and
bombs. The most commonly used formulas are the modified Petry,
Army Corps of Engineers, modified NRDC, the Amman and Whitney, and
the BRL. [These formulas and their limitations and limits of
applicability are summarized by Kennedy (1976)]. All of these
formulas were derived for a nondeformable projectile (often made
from armor-piercing steel) impacting normal to the target face.

In 1946 the National Defense Research Committee proposed a
theory of penetration for a short, nondeforming projectile pene-

95

U U M L LI U LK L B H I U H H U EKE E K L



trating a massive concrete target which offered a good approxima-
tion of the experimental results. This theory of penetration
enables one to not only calculate the total depth of penetration,
but also to calculate the impact force-time history and penetra-
tion-depth time history. Based upon this theory of penetration,
the National Defense Research Committee (NDRC) proposed that the
penetration depth x be obtained from

0

= xna?- 2% (vs/3o4.7)1°8 (5-1)

G (x/a)

where 2
(x/2d4)°, for x/4 2.0

G = (5~2)

(x/d) [(x/d) - 11, for x/4 2.0

and

K = Concrete penetrability factor (measures the resistance
of concrete to penetration) (m2-8/kg).

N = Projectile nose shape factor: 0.72 for flat nose
shapes, 0.84 for blunt bodies, 1.0 for average bullet
nose, and 1.:14 for very sharp nose.

d = Projectile diameter (m). The equations presented
herein are based entirely on cylindrical projectiles.
For arbitrary shaped fragments, d is the diameter of
an equivalent cylindrical projectile with the same
contact surface area as the actual missile.

D = M/d3 = caliber density of the projectile (kg/m3)
v = Missile striking velocity (m/s).

X = Total penetration depth (m); the depth a missile will
penetrate into an infinitely thick target. This
neglects all rear face boundary effects and therefore
applies only when target thickness is sufficient to
prevent scabbing at the rear face.

The primary advantage of this formula is that, since it is based
on a theory of penetration, it can be extrapolated beyond the
range of available test data with greater confidence than is true
with the other equations. Unfortunately, because of the reduc-
tion of interest in projectile penetration of concrete after
1946, the NRDC effort was aborted before the factor K was
completely defined.

According to the NDRC report, K should lie between 2 and 5
(in English units), depending upon the concrete strength, to fit
the available test data. Based upon both theoretical and experi-
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mental considerations, it was suggested in 1966 that the concrete
penetrability factor K is proportional to the reciprocal of the
ultimate concrete tensile strength, which in turn was taken to be
proportional to the square root of the ultimate concrete com-
pressive strength f;. By fitting this relationship to the experi-
mental data available for the larger missile diameters, the
following relationship for K was obtained:

K = l.l34/(fé)l/2 (m2-8/kq) (5-3)

The combination of Equations 5-2 and 5-3 is defined herein as the
modified NDRC formula for penetration.

For slab thickness to projectile diameter ratios greater than
three, Equation 5-1 can be used in conjunction with Equations 5-4
and 5-5 for predicting perforation and scabbing thicknesses.

e/d 1.32 + 1.24 (x/d), for (3se/d<18) (5-4)

s/d 2.12 + 1.36 (x/d), for (3 <s/d<18) (5-5)

where

e = perforation thickness (m); the maximum thickness of con-
crete which will be completely penetrated by missile at
a given velocity.

and

s = scabbing thickness (m); thickness of a target required to
prevent scabbing of material from the backface for a
missile with a given velocity.

However, for many impact problems, the slab thickness to projec-
tile diameter is substantially less than three. Beth (1945)
gives a curved-fit extrapolation of these equations for slab
thickness to projectile diameter ratios less than three so that
the equation would pass through the origin. Parabolic fits which
both pass through the origin and have the same slope as Equations
5-4 and 5-5 at a slab thickness to projectile diameter ratio of
three have been proposed [Kennedy (1976)]. This parabolic fit
leads to

.15

7.91 (

Q.
I
e

) - 0.718 (g)z, for x/d ¢l.35, (5-6)

) — 5.06 (3)2- for x/d <0.65, (5-7)

ol
1l
Q|
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whereas for larger x/d ratios, Equations 5-4 and 5-5 are to be
used. These modifications, when used together with Equations

5-2 and 5-3, are known as the modified NDRC formulae for perfora-
tion and scabbing. Their primary advantage over the other
formulae is that they can be extrapolated to slab thickness to
projectile diameter ratios less than three without leading to un-
reasonable results.

All of the formulas for concrete penetration are based on a
limited range of parameter variation. Unless otherwise noted,
these formulas are valid only for the following ranges:

t/d 2 3
d £ 0.4 m

5.5 x 10> kg/m> < D ¢ 2.20 x 10% kg/m>
(5-8)

500 m/s < V <« 3000 m/s
3 ¢« e/d < 18
3 ¢« s/d ¢ 18

For long rods impacting concrete panels, recent model and
full-scale testing of simulated tornado-borne missiles also gives
prediction methods for scabbing thresholds for reinforced con-
crete panels. Sources for the basic data are discussed, and
the curves generated, by Baker, Hokanson, et al (1976).

Figure 5-2 gives scabbing thresholds for steel pipes impact-
ing normally on lightly reinforced concrete panels, with rebar
percentages <l1%. 1In this figure, KE is impact kinetic energy, h
is concrete panel thickness, 4 is pipe outside diameter, and ty
is pipe wall thickness. Length-to-diameter ratios are variable,
but all are greater than 5:1. Each curve gives the scabbing
threshold for a particular wall thickness ratio.

Curves for scabbing caused by normal impact of solid rods, of
material strong compared to the concrete, are given in Figure 5-3.
The thresholds are quite different for slabs which are reinforced
heavily enough for the rebar spacing to be significantly closer
than the rod diameter (heavy reinforcing) and for spacing open
enough that a rod can pass through without striking a rebar
(light reinforcing). Rods were of %/d ratios ranging from 1.75-
40. A number of long wooden missiles were also fired against re-
inforced concrete panels, but these missiles were invariably
defeated by the panels, with negligible damage to the panels them-
selves.
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Steel Panels

In Baker, et al (1975), prediction curves have already been
given for perforation thresholds for thin metal impacted by
chunky fragments of essentially nondeforming material. Long,
deforming missiles, such as wood poles, can also perforate steel
plate panels. Baker, Hokanson et al (1976) fit a penetration
threshold curve for wooden missiles impacting large steel panels
normally. This curve is reproduced here as Figure 5-4, and the
empirically-fitted equation is given by

2

p_V -1 2 -1
s _ h\/1 h 2 _
_Bgz_ = 1.751 (a)<a) + 144.2 (a> (d) (5-9)

Here, Pp is density of projectile material, Vg is striking velo-
city, and op is yield strength of the steel plate material.
Figure 5-4 applies for the test length-to-diameter ratio, %¢/d =
31.1.

In using the empirically-fitted curves in Figures 5-2, 5-3
and 5-4, the reader is cautioned to avoid extrapolation. Equa-
tion 5-9 should also be limited to the ranges:

5 <1/d < 40
(5-10)
0.042 < h/d < 0.1

Example 1:

A flat-ended cylindrical steel rod, with a mass M of 8 kg
and diameter d of 75 mm impacts a thick concrete wall with com-
pressive strength fi = 26 MPa at a striking velocity Vg = 600
m/s. What is the penetration depth x, perforation thickness e,
and scabbing thickness s?

Step 1. Calculate K from Equation 5-3.

6)1/2 4 m2.8

K= 1.134/(26 x 10 = 2.224 x 10~ kg

Step 2. Chose projectile nose shape factor N. This is 0.72
for the flat nose shape.

Step 3. Calculate caliber density D from its definition.

D= M/a’ = 8/(0.075)7 = 1.896 x 10 kg/m3
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Step 4. Substitute in Equation (5-1)and calculate G.

1.8
G=2.224 x 1074 x 0.72 x 0.075%°2 x 1.896 x 10° (38207)

G =6.124

Step 5. Use Equation (5-2) to calculate penetration x. Assume
that (x/2d) > 2.0. Then, (x/d) =1+ G =1+ 6.124
= 7.124.

X =7.124 @d = 7.124 x 75 = 534 mm = 0.534 m

Step 6. Use Equation {5-4) to calculate e.

e =75 [1.32 + 1.24 x %%é] = 762 mm = 0.762 m
Step 7. Use Equation (5-5) to calculate s.
S = 75 [2.12 + 1.36 x 2%?] = 886 mm = 0.886 m

Example 2:

A steel rod of diameter d = 25 mm with a mass M = 10 kg im-
pacts a heavily reinforced concrete wall which has a thick-
ness h = 100 mm with an impact velocity v = 60 m/s. - Will
the wall scab?

Step 1. Calculate impact kinetic energy.

KE = (%)Mv2 = % x 10 x 602 = 18kJ

Step 2. Calculate scaled kinetic energy.

3
5% = 15—5—%9— = 18 MPa
h 0.1

and scaled target thickness

h _ 100 _ ,
at 25

Step 3. Enter Figure 5-3, and plot intercept from Step 2.
This lies well above the threshold curve for heavy
reinforcing, so scabbing should occur.
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Examgle 3:

A long steel pipe with d = 75 mm, ty = 3.0 mm impacts a
100 mm reinforced concrete panel at 20 m/s. It has a mass of
10 kg. Will it cause scabbing?

Step 1. Calculate impact kinetic energy.

KE=%X10X202=2kJ

Step 2. Calculate scaled kinetic energy, and scaled target
thickness, scaled wall thickness

3
ke _2x10 o,
h 0.1
h _ 75 _
2t

Step 3. Enter Figure 5-2. In this case, our intercept lies
along the bottom line and somewhat to the left of
the curves. We wish to compare to the middle curve,
for which scaled wall thickness is 0.08. We cannot
say unequivocally whether scabbing will or will not
occur, because we are beyond the range of the fitted
curves.

Example 4:
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A wooden post is hurled against a steel curtain wall at 100
m/s. The post has a diameter d = 150 mm, a length 2 = 4.5 m,
and a density pp = 650 kg/m3. The steel curtain wall is 6 mm
thick and has a yield strength oy = 240 MPa. Will the post
penetrate?

Step 1. Calculate scaled quantities to enter Equation (5-9).

‘|m

h _ _
d = 150 0.04
L _ 4500 _
3~ 150 - 30
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Step 2. Calculate scaled striking velocity from Equation (5-9)
for incipient penetration.

2
p. V 2
p's _ 1.751 x 0.040 . 144.2 x 0.04
Oy 30 30
p_V 2 -2
-2 =1.00 x 10
t

Step 3. Calculate scaled striking velocity from input para-
meters, and compare to threshold value.

2
Vs _ 650 x 100°
¢ 240 x 10°

2

= 2.71 x 10~

This value is more than double the threshold for penetration,
so the wood post goes through the steel curtain wall like a
knife through hot butter.

Effects of Barricades on Blast Waves

Barricades are constructed either near potential explosion
sources or near structures and facilities located in the
vicinity of potential explosion sources. As noted earlier,
they are intended as protective devices to arrest fragments
or attenuate blast waves.

The two most common types of barricades are earthworks
(mounds), and earthworks behind retaining walls (single-
revetted barricades). The definitions of these types of
barricades, taken from Department of Defense explosive safety
regulations, follow:

Mound. An elevation of earth having a crest at least 3
feet wide, with the earth at the natural slope on each
side and with such elevation that any straight line
drawn from the top of the side wall of a magazine or
operating building or the top of a stack containing
explosives to any part of a magazine, operating build-
ing or stack to be protected will pass through the mound.
The toe of the mound shall be located as near the maga-
zine, operating building, or stack as practicable.

Single-Revetted Barricade. A mound which has been
modified by a retaining wall, preferably of concrete,
of such slope and thickness as to hold firmly in place
the 3-feet width of earth required for the top, with

105



the earth at the natural angle on one side. All other
requirements of a mound shall be applicable to the
single-revetted barricades.

Most of the useful data on attenuation of blast effects be-
hind barricades appear in a single reference, Wenzel and Bessey
(1969). Scaled tests for both mound and single-revetted barri-
cades, with spherical Pentolite explosion sources generating the
blast waves, were conducted for the explosion sources near the
barricades (near field) and near the protected structure (far
field). Specific configurations tested are shown in Figure 5-5.
All explosive spheres were located at scaled height H = 0.036
above an armor plate reflecting surface to eliminate cratering
effects, at the scaled distances R shown in Figure 5-5. The
barricade dimensions were scaled to represent full-size barricades
with heights h of about 3 m and 6 m.

The principal conclusions reached by Wenzel and Bessey (1969)
as a result of their tests were:

1) Barricades do reduce the peak pressures and impulses
immediately behind the barricades.

2) Single-revetted barricades are more efficient in reduc-
ing peak pressures and impulses than mound barricades.

3) Values of peak pressure and impulse are greatly in-
fluenced by the gage height relative to the ground, the
location of the barricade, and the barricade dimensions
and configurations.

4) In the near field case for single-revetted barricade
configurations, a significant reduction of pressure and
impulse was observed out to scaled distances of R = 1.
Beyond that distance, the peak pressures tend to
approach those of the free field case very rapidly, and
the impulses also tend to approach those of the free
field case but not as rapidly as the peak pressures.
The times of arrival in specific locations are greater
than those of the free field case up to scaled_distances
of R=1.6. At scaled distances greater than R = 1.6
they approach rapidly those of the free field case.

*
Definitions for scaled distance are given in Chapter II.
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5} In the near field case, mound configuration, the peak
pressures and impulses are not greatly reduced, and
actually are increased over the free field case at a
scaled gage height of Hq = 0.02 and a scaled distance
of R = 0.43. However, ghe pressure and impulse observed
at the scaled gage height of Hg = 0.05 at R = 0.32 are
both less than the free field values. There was a
considerable decrease in pressure and impulse for the
gage located at R = 4.84 and scaled height of Hg =
0.016, respectively. The times of arrival were the same
as those observed in the free field case for all scaled

distances and scaled heights.

6) For the far field case, single-revetted barricade con-
figuration, the peak pressures and impulses were
significantly reduced immediately behind the barricade;
however, their individual values varied as a function
of gage height. The times of shock arrival were the
same as those observed in the free field case for all
stations measured.

7) For the far field case, mound configuration, the same
observations as those made for the single-revetted case
can be made here except that the effect of the barri-
cades is considerably less than for the single-revetted
configurations.

The blast attenuation caused by mound barricades, although
measurable in the experiments cited above, is small enough to be
essentially negligible, for the purposes of this workbook.
Similarly, the attenuation for single-revetted barricades in the
far-field case is so localized and directional that no general
predictions can be made. But, for the single-revetted barricades
in the near field, we can give scaled curves for blast wave prop-
erties which are attenuated from surface burst explosion waves
without barricades. Figure 5-6 shows_variation of scaled side-on
overpressure Pg with scaled distance R for this configuration, for
surface burst explosive charges without barricade and with single-
revetted barricade. Similarly Figure 5-7 gives variation of
scaled side-on pressures Ig versus R for this situation.

These curves should only be used to predict blast attenua-
tions over the ranges of scaled distances shown, i.e., 0.35 < R <
9.0. They should also be applied with caution for blast sources
other than condensed explosives because there are no extant data
for effects of barricades on the non-ideal blast waves from acci-
dental explosions. Data scatter for the peak overpressure curves
is about +5%, and for the impulse curves, about +10%.
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FIGURE 5-6. EFFECT OF NEAR-FIELD, SINGLE-REVETTED
BARRICADE ON PEAK OVERPRESSURE
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Example Problem

A single-revetted barricade is located close to a propellant
Storage source with potential blast energy E = 1000MJ, calculated
by methods given in Chapter I. If the source explodes, what are
the incident blast wave parameters at a distance of 100 m? The
site is located near sea level, with Po = 1.01 x 103 Pa and ag =
340 m/s.

Step 1. Calculate scaled distance R. It is defined as (see
Chapter 11).

= - R po1/3/E1/3

100 x (1.01 x 10°)1/3

R = 1/3

= 4.66

(10°)

Step 2. Enter Figures 5-6 and 5-7 to obtain scaled overpres-
sure and impulse. From dashed curves,

P =0.070, T = 0.0087
S S

Step 3. "Unscale" to obtain blast parameters.

Po = Py x p_ = 0.070 x 1.01 x 10° = 7.07 kpa
= 2/3 1/3 2/3 1/3
r =18 *Po T XETT 50087 % (1.0l x 10°) " x (109
s a 340
O
I, = 355.5 Pa-s
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CHAPTER VI

DISCUSSION AND RECOMMENDATIONS

We believe that this workbook should be a definite aid to
designers and safety engineers in predicting damage and hazards
from accidental explosions in ground handling systems. It
should prove to be a useful adjunct to our earlier workbook for
predicting explosion hazards in flight systems, NASA CR-134906.
For the convenience of the reader, microfiche copies of the
earlier work are attached to each copy of this report.

Parts of this work should have wider application than indi-
cated by the title. The additional methods for rapid structural
damage prediction can be used for any blast source, provided the
peak overpressures and positive impulses can be predicted. The
computer programs and methods for prediction of velocities and
trajectories of lifting fragments and thrusting burst vessels can
be effectively applied to transportation accidents with tank cars
and tank trucks containing many types of pressurized fluids, in
addition to rocket propellants. The methods for estimating ex-
plosive energy release for flash-evaporating fluids can be used
to predict severity of boiler explosions, or severity of blast
for any type of liquid and gas mixture stored under high pressure.
The data and prediction methods for effects of impact of massive
fragments or missiles are not limited to fragments generated by
accidental explosions in ground handling systems, and indeed were
taken from other related studies.

A number of prediction waves are given in this work for the
characteristics of blast waves from bursting gas pressure vessels,
and some for bursting vapor spheres. These waves exhibit some
characteristics which are distinctly different from blasts from
condensed explosives such as TNT, including pronounced negative
phases and pronounced second shocks. Most structural response or
damage analyses account only for pressures and impulses in the
first positive phase, and we therefore recommend further study of
responses to waves with characteristics such as in Figure 2-8.

It would also be very desirable to conduct more scaled experi-
ments with bursting, pressurized vessels, to generate additional
blast prediction curves. These should probably include:

1) Tests with light gases such as helium.

2) Tests of bursting spheres filled with vapors of higher
saturation pressure such as Freon-22, Freon-13, or
sulfur hexafluoride (SFg) to better determine the

effect of sphere pressure on the overpressures mea-
sured.

113

U b K U L LK L L L H b & E O 0 K & Lk L



3) Tests using the same fluids as above but in liquid form
just above saturation pressure at room temperature.

4) Tests using flash-evaporating fluids in liquid form at
a high-pressure heated above room temperature to just
below the saturation temperature.

Concurrent with the continuation of study of the character
of blast waves from accidental explosions, one should also review,
and alter if necessary, the prediction methods for structural
response and damage in this workbook, in NASA CR-134906, and
related references which assume that the wave can be described as
a simple, single pulse. The basic analytic tools to do this are
readily available, but application to as complex a loading pulse
as Figure 2-8 will require careful application of these techni-
gues, and almost invariably, some increase in complexity of
response prediction.

For reasons of economy, this workbook, unlike NASA CR-134906,
contains no assessment of accident scenarios for typical situa-
tions which have occurred or could occur in ground transport or
storage of liquid propellants and compressed gases. A supplement
containing evaluations and predictions of blast and fragment
effects for a number of cases, should prove useful and instruc-
tive to safety engineers.

Several related and potential problems with potentially
explosive ground storage and transport systems could perhaps be
addressed in following studies. One question concerns planning
of in-service testing of pressure storage vessels to avoid or
prevent accidental explosions. Many new and effective nondestruc-
years, and applied in industries such as the nuclear power
industry. For storage vessels of large volume and/or high pres-
sure, where the hazards are great in the event of vessel failure,
the frequency or thoroughness of such testing might be increased.

This workbook includes a number of prediction methods for
fragment and missile impact conditions and locations near explo-
sions, and some relatively new data and prediction curves for
effects of impacts of relatively massive missiles. There is
still a serious lack of data on massive missile impact effects.
Scale model techniques have proven to be efficient in gathering
enough data rapidly and relatively inexpensively to generate
- impact effects curves (see Figures 5-2 through 5-4), but most

of the classes of missiles expected in accidental explosions have
not been tested against industrial or residential "targets". We
would certainly recommend a carefully planned model test program
to fill this gap.
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Looking into the future, we can perhaps anticipate an in-
creasing shift to a hydrogen fuel economy. If this occurs,
large volumes of hydrogen must be stored either as a compressed
gas or as a cryogenic liguid near distribution points. As an
aircraft fuel, the hydrogen would most probably be used as a
cryogenic liquid, which would necessitate large volume storage
near airports. Can this be done safely? A thorough safety study
would have to precede any serious plans for such a change, with
workbooks like this report providing part of the input to assess

the hazards.
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APPENDIX A

Calculations of Blast Wave Properties for
Pressure Vessel Bursts

The method for predicting the overpressure and specific im-
pulse from the burst of a thick-walled pressure vessel is the
result of the following analysis.

TUTTI [Gentry, et al (1966)],a two dimensional finite dif-
ference computer program for compressible fluids, was used to
calculate the axisymmetric flowfield surrounding a quadrant of
a bursting pressure vessel. The geometry is shown in Figure A-1.
During the calculation, the quadrant of the vessel moves along
the axis of symmetry at a prescribed velocity. The velocity and
position of the vessel are calculated by a computer program
called FRAG [see Baker, et al (1975)]. These are supplied to
TUTTI. (TUTTI was modified to allow a moving solid boundary.)

Six sets of initial conditions were used (Table A-1), with
T1/T3 = 1 for all of them. The radius of the sphere is 0.19 m.
Increments Ar = 0.0375 m, and Az = 0.0300 m were chosen for the
flowfield. The rather large Ar and Az cause the shocks to be
spread out, and some accuracy is lost, but this is necessary for
economy.

ﬁs_vs. R is plotted for these computer runs in Figure A-2.

vs. R is plotted in Figure A-3.

i

Figure A-2 was used to derive the overpressure prediction
method_in the text. The point at the end of the dashed_line is
(Pgsor Ro), where Pgo* is defined in the text and R, is R corres-
ponding to the edge of the sphere. The solid lines show the
overpressure behavior after a shock has formed. On the dashed
portion of the curves, a shock has not formed yet. Connecting the
points of transition to a shock in Figure A-2 gives Curve A in
Figure 2-5. It is observed that, for these bursts, the overpres-
sure on curve A, P, is related to Pgo by Pa = 0.21 Pgp. This
permits the location of a starting point for Pg vs. R behavior.

A family of Pg vs. R curves has been drawn on Figure 2-5. Once
the starting point has been found, the nearest curve(s) can be
followed.

As was true for the one-dimensional study in Baker, et al
(1975), the I vs. R behavior is not clear, and the pentolite curve

L 1. - .
Pgo is calculated by assuming constant pressure across the con-

tact surface between the stored gas and the atmosphere immediately
after the vessel burst. See Baker, et al (1975).
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has been extrapolated to small R to provide a conservative esti-

mate for I.

The computer outputs from TUTTI also show the highly direc-
tional nature of the blast field close to the bursting sphere.
Figs. A-4 and A-5 are indicative of this directionality. The
pPrinted output also gives some indication of variation of over-
pressure along other radial lines from the center in addition to
along the plane of symmetry; in particular, along the lines 6 =

30° and 8 = 60°, But, the limitations of ce
capability precluded complete mapping along

U U U K L UL L L U U

11 size and computer

these lines.
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TABLE A-l.

INITIAL CONDITIONS FOR
PRESSURE VESSEL BURSTS

|

Z Axis of
symmetry
FIGURE A-1.

Run Gas El
Number P, Y1
1 air 987.2 1.4
2 Ho 987.2 | 1.4
3 He 987.2 1.667
5 CO, 987.2 1.225
7 air 98.72! 1.4
9 Cco, 14.81 | 1.225
= Plane of symmetry
(8=0")
— APPROX|MATE
' BOUNDARY
o =30

QUADRANT OF FLOWFIELD FOR
BURSTING PRESSURE VESSEL
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119

b U K b L UL L L b W U & E 0B 0 KB O L L



VESSEL BURST -

r~|

161 2 4 6

FIGURE 2-3. I VS R FOR BURSTING PRESSURE VESSELS
TG
%?%'900?‘@
H ¥ M EF L L L L L OB B & B B B B B L L

1
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APPENDIX B

Development of Additional Prediction Methods for
Structural Response to Blast Wave Loading

The elastic and elastic-plastic beam solutions which are
presented in Figures 3-1 and 3-2 were derived using conservation
of energy principles. To illustrate how these relationships can
be derived, we will compute Figure 3-2 for an elastic, simply-
supported beam. A deformed shape must be assumed in beam and
plate like structures. Assuming a deformed shape which corres-
ponds to the static deformed shape for a beam undergoing uniform

loads gives: ,
3 4
= 16 X _ o2 X -
¥=% % {:2 2(2) * (2)] (B-1)

This deformed shape is then differentiated twice with respect to
X so that the elastic bending moment M can be obtained from M =

2
—EIQ—%. This procedure gives for the bending moment
dx

- 225 () - (3]

The strain energy S.E. stored in a deformed beam can then be
£ 2
M dx
2EI  °

determined by substitution into S. E. Substitution

gives:

2 2
(192) EIwo

e [ @ e e

Or after completing the integration

SE = 24.576 o (B-4)
3

The asymptote which is impulse dependent is determined by
equating the kinetic energy KE to the strain energy. The kinetic
energy is given by: :

2
- 2 _ L -
KE = (1/2)m V_* = > (B-5)
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b U U L

Substituting pAfL for m and ibf for I gives:

.2, 2
_ 1"b"8 _
KE = T (B-6)

Equating U to KE gives the impulsive loading realm asymptote

2
L2, 2 EI w
i™b78% _ o -
ToR 24,576 -—Ei—— (B~7)

Equation (B-7) relates applied impulse to deformation. To relate
impulse to bending stress we must use the moment-curvature rela-

tionships. The maximum moment as given by Equation (B-2) occurs

at x/2 = 1/2. The maximum moment is then given by:

- 192 2 % (B-8)
max 20 22
M H/2 w
. . - _max . o . .
Substituting Omax — I and solving for 7 Jives:
w o] L
o _ 5 “max _
2 T 24 EH (B=9)

Finally, taking the square root of Equation (B-7) and substituting
Equation (B-9) into Equation (B-7) to eliminate Wo gives the
asymptote for the impulsive loading realm in terms of the maximum
bending stress.

ibH max

YPEIA

Equation (B-10) is the impulsive loading realm asymptote plotted
in Figure 3-2. The numerical coefficient 1.461 in Equation (B-10)
is the aj coefficient for a simply-supported beam. In Equation
(B-9), the number 5/24 is the Cy coefficient in Figure 3-2 to re-
late stress to deformations in a simply-supported beam.

= 1.461

(B-10)

The quasi-static asymptote in Figure 3-2 is computed by cal-
culating the maximum possible work WK and equating this quantity
to the strain energy. This quantity equals:

L
Wk = [ pb(dx)y (B-11)
o
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After substituting Equation (B-1l) for Y:

ako= 16 o [x o)L (Y dx (B-12)
= 75 PP, g' ) (z )
Or after integrating:

_ 16
Wk = 5E pbi v,

The strain energy has already been calculated as Equation (B-4).
Equating S.E. to Wk gives the quasi-static loading realm asymptote.

L6 ET w_’
3% PbL w_ = 24,576 ——=2- (B-13)
g

Equation (B-13) relates applied pressure to deformation. To re-
late pressure to bending stress, we substitute Equation (B-9) for
Ws and algebraically rearrange terms to obtain:

2

POHY - 8.0 (o/E) (B-14)

Equation (B-14) is the quasi-static loading realm asymptote
plotted in Figure 3-2. The numerical coefficient 8.0 in Equa-
tion (B-14) is the ay, coefficient for a simply-supported beam.

The coefficient C,, relating maximum bending stress to the maximum
shear force is obtained by differentiating the moment equation,
Equation (B-2), with respect to x to obtain the shear force V with
respect to deformation w,.

EI w
_ daM = 192 (o) _ 2Xx _
V = =— = 3 [ -75] (B-15)

The maximum shear occurs at x = 0 or x = 2. Setting x = 0 and
substituting Equation (B-9) for wy gives:

I

a
_ max -
Vimax ~ 8-0 —H (B-16)

Equation (B-16) is the shear equation presented in Figure 3-2.
The numerical value of 8.0 in Equation (B-16) is the C,, coeffi-
cient for a simply-supported beam.

The intermediate transition was faired in using a hyperbolic

tangent squared relationship which from our practical experience
seems to fit gquite well. Note that for small values
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1/2
_ 2 |KE
SE = Wk tanh [Wk] (B~17)
of the argument, the tanh equals its argument and we obtain the
impulsive loading realm asymptote from SE = KE. For large argu-
ments the tanh equals 1.0, and we obtain the quasi-static loading
realm asymptote from SE = Wk.

This approach, within the bounds of a Bernoulli-Euler, small
deformation, beam solution, gives exact answers for both strain
and deformation in the quasi-static loading realm. These "exact"
answers occur because the deformed shape is correct in this do-
main. In the impulsive loading realm only approximate answers
are given because the deformed shape is not gquite right; however,
the results are sufficiently accurate, especially when one realizes
the uncertainties associated with the load. More accurate answers
are obtained if a more accurate deformed shape is assumed. Actual-
ly the interrelationship of one variable with another remains the
same irrespective of the assumed deformed shape. The only effect
of using other deformed shapes is to slightly modify the numerical
coefficients Oi, Ops Cyr and Cy.

To :compute the p-i diagram for cantilever, clamped-clamped,
clamped-pinned, or beams with any other boundary condition, the
same procedure can be followed. If the assumed deformed shape
corresponds even approximately to a beam with the correct boundary
conditions, then fairly accurate answers will result. The only
difference in the solutions of beams with different boundary con-~-
ditions is that different numerical values arise in the O +Opy
Cy, and Cy coefficients.

At this stage we will not compute the p-i diagram for the
elastic-plastic beams as complex integrations are involved which
must be performed on a computer. Response of a rigid-plastic
beam can, however, be determined using hand calculations. The
only differences are that after an assumed deformed shape is
assumed and the curvature is obtained by differentiation, the
strain energy is determined by integrating the plastic yield mo-
ment times the curvature over the entire span of the beam. The
procedure of then equating strain energy to kinetic energy to
obtain the impulsive-loading realm asymptote, and strain energy
to work for the quasi-static asymptote remains the same. The
deformations obtained from such a rigid-plastic analysis are re-
sidual permanent deformations and strains. In the elastic analy-
sis, maximum deformations and strains are estimated.

Several observations should be noted from these numerical
calculations. In the impulsive loading realm, maximum bending
stress is independent of span &. This conclusion is mathemati-
cally correct. It is caused by span entering the strain energy
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and kinetic energy expressions to the same power, so that it can-
cels. In the impulsive loading realm, the response depends only
on the impulse or area under the applied pressure time history.
In the quasi-static loading realm, response is independent of
beam density and duration of the loading.

To derive the graphical solution presented in Figure 3-3,
a deformed shape was assumed to be given by:

= in IX -
y = w, sin (B-18)

The extensional strain for small deformations is approximated by

2
Q/Z(%¥ . Differentiating Equation (B-18) and substituting

gives:

T W
£ = g cosz<%§> (B-19)
28

The maximum strain occurs when the cosine equals 1.0 or:

- o -
£ = > (B-20)

This equation is the relationship relating strains to deformation
in Figure 3-3. 1If this solution is to be an elastic-plastic one,
we need an elastic-plastic constitutive relationship. Equation
(B-21) is assumed to be this relationship because it lets stress
equal Ee¢ for values of E¢/oy less than 0.5, and lets stress equal
Oy for values of Ee/oy greater than 2.0.

g = o, tanh (EE) (B-21)
y o
y
The strain energy per unit volume in an elastic-plastic system
is the area under the stress strain curve. Equation (B-22) gives
for the strain energy per unit volume

3
SE/Vol. = [ o tanh (F—E)de (B-22)
y o
o b4
Or:
2
o Ec
SE/Vol. = —%— log cosh (E—) (B-23)
y
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Substituting Equation (B-19) for € in Equation (B-23) and multi-

plying by the differential volume A, dx gives as an integral
for the strain energy:

2A L WzEw 2 2 /rx
SE = 9%;— [ log cosh | —5—- cos (——)dx

o)
(B-24)
5 2022 %
Yy

Substituting in a dimensionless variable 2 equal to mx/¢ and sub-

Tr2w 2
stituting in ¢ for o (Equation B-20) finally gives an

max 212’2

integral for the strain energy:

o. "Af Ll Ee
SE = —‘TTLE— [ 1log cosh [—% cos 22:] dz (B-25)
o Y

The asymptotes can now be calculated as before. The impulsive
loading realm asymptote is obtained by equating kinetic energy KE
to strain energy. The kinetic energy is given by:

2 .2, 2
i'b 2
208 (B-26)

[}

KE =

l

N
=S

Equating Equations (B-26) and (B-24) plus rearranging terms
gives:

1/2

2
] T Ee
[i%%i__{J = % f' log cosh [k—gm§§> coszé] dz (B-27)
A
P OY

o Yy

A computer is needed to numerically integrate Equation (B-27) for

Ee

various constant values of scaled strain —a2X, Equation (B=-27)

does show that the impulsive loading realm asymptote in functional
format can be given by:

ibEl/2 E max
/7R " Y (—E—__) (Impulsive Realm) (B-28)
p g Y

Y

Equation.(B-28) is plotted as the asymptotes to the impulsive
loading realm in Figure 3-3.
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To obtain the guasi-static loading realm asymptote, we
calculate the work Wk.

L
_ L TX _
Wk = pbw0 g' sin —~ ax (B-29)
or 2pb9,wO
Wk = — (B-30)

Substituting Equation (B-20) for wg in Equation (B-30), equating
(B-30) to Egquation (B-29), and rearranging terms gives an equa-
tion for the quasi-static aysmptote.

1/2 /2 T Ee
ebte 2 (BT T og cosn [(_c@) coszz] az  (8-31)
c A (EE ) 0
)% max

Yy
o

A computer is also needed to numerically integrate Equation (B-31)

Ee
for constant values of gax. Equation (B-31) shows that the

quasi-static loading realm asymptote is functionally given by:

bret/?

£
1/2 = VY (——E§5> (Quasi-Static Realm) (B-32)
p OyA

o
y

Equation (B-32) with the proper functional format is plotted as
the asymptotes to the quasi-static loading realm in Figure 3-3.
An approximation still had to be made to establish a transition
between the impulsive and quasi-static loading realms. The same
hyperbolic tangent squared relationship, Equation (B-17), was
used for this string solution as had been used in the beam solu-
tions.

To derive the solution for buckling of a column, we must
assume a deformed shape. If the column is simply-supported with-

out side-sway, a sine wave as in Equation (B-33) is a good assump-
tion

- i TX -
Y = w051n T (B-33)

Differentiating Equation (B-33) twice and substituting into M =

2
-EIQ—% gives the moment
dx
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T Elw
M = sin IX (B-34)
2 L
A
L M2dx ,
The strain energy is the integral j' SET or:
o
L/2 1r4EIwo2 2 /rx
SE = 2 2 sin (T) dx (B-35)
o 28
Which, upon completion, gives:
m EIwo2 .
SE = —3 (B~36)
42

The load on the column will act through a deflection § equal
to S-%, where % is the original length of the column. The dif-
ferential length ds is given by:

ds = dx/A + (%)2 (B~37)

Upon expanding with the binomial theorem and integrating this
gives:

§ = fg [1+(1/2)(%¥>2 + ] (B-38)

(o)

Completing this integration and substracting £ from s to obtain
8§ gives as a first approximation:

2 13072
5§ =(/2) [ (53%) dx (B-39)
o]

We can now proceed to solve for the work:

2

We=pas= B} [ () ay (B-40)

Substituting in the first derivative of Equation (B-33) to inte-
grate gives:
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2 2
T PpAW 2 2 /1x
Wk = ——>— [ cos (7f> dx (B-41)
o)
22
Or upon completion:

nszwo

Wk = a1 (B-42)

The quasi-static asymptote is obtained when the strain energy
is eguated to the work:

ﬂ4EIW02 = szAwoz (B-43)
T 4% -
Or:
Eé&i - TT2 (gquasi-static asymptote (B-44)
EI S.5. beam-no side sway)

Equation (B-44) should look familiar. It is the Euler beam
buckling solution. The dynamic load factor equals 1.0 instead
of 2.0. Because the vertical load pA is independent of wg,, we
have the classical small deformation Euler column instability.
The factor op in Figure 3-4 is equal to m2 for this pinned-pinned
column without side-sway. The concept of effective column length
with 2 being the distance between points of inflection can be
applied in analysis. A review of o, for a pinned-pinned column
with side-sway shows a column with only one quarter the strength
because the effective length of the column is twice as long.
Similarly 0p for a clamped-clamped column without side-sway is
four times stronger than the simply-supported column because the
effective length of the column is halved..

To compute buckling in the impulsive loading realm, we need
the kinetic energy imparted to the overlying mass. This kinetic
energy edguals:

L\ 2
KE = (1/2) mV02 =(1/2m (1_;5) (B-45)
Or
2 2
KE = 18 (B-46)

Equating KE to SE gives the impulsive loading realm asymptote.
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W4EIW 2
O

3

(ia)? _

>m (B-47)

42

Notice that, unlike the quasi-static loading realm result, the
deformation w, does not cancel out of Equation (B-47). This re-
sult means that "stable buckling" occurs in the impulsive loading
realm. A certain quantity of kinetic energy is being put into
the column, which strain energy can dissipate until the deforma-
tions are large enough to cause yielding. This observation means
that we must use Equation (B-34) to obtain the maximum moment,
sin mx/2 equal 1.0, and substitute into a o = MH/2% to relate the
maximum bending stress (to be limited by Oy) to the deformation
Wo-. This substitution gives:

WzEHwo
G = — 0 B-48
Y 292 ( )

Substituting Equation (B-48) into Equation (B-47), rearranging
terms algebraically, and taking the square root of the result
finally gives:

(ia)g vE - /30 (impulse asymptote (B-49)
oy Y s.s. beam,no side-sway)

The numerical coefficient V2.0 is the a; coefficient in Figure
3-4. Other a; coefficients must be computed independently. The
static concept of effective length no longer applies in the im-
pulsive loading realm; hence, it should not be used. We have
already mentioned that in the impulsive loading realm, it is a
"stable buckling" or actually bending phenomenon that occurs.
Permanent deformation does not occur until the column vields.
The same Equation (B-17) was used to estimate a transition bet-
ween the quasi-static and impulsive loading realms as has been
used to approximate this transition in all earlier analysis.
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APPENDIX C
Model Analysis for Bursting Containment Vessels

The model analysis used here is patterned after the techni-
gues explained by Baker, Westine, and Dodge (1973). The purpose
of the model analysis is to devise a method of consolidating the
results of the computer runs made to predict velocities of frag-
ments from pressurized spheres and cylinders. Such a consolida-
tion will result in the need for fewer graphs and tables, will be
of a more general nature, and will be easier to use.

To conduct the model analysis, it is necessary to list all of
the physical parameters which are indigenous to the problem. A
listing of these parameters is contained in Table C-1 which in-
cludes vessel characteristics, gas characteristics, and a response
term. Since only spheres and cylinders with hemispherical endcaps
and with an L/D ratio of 10.0 (includes the endcaps) are being
considered, one needs to include the vessel's diameter d, thickness
h, length 2, volume V, mass Mg, the yield strength oy of the mate-
rial of the vessel's walls, and the number of fragments n that the
vessel breaks into. It is assumed that the vessel breaks into n
equal fragments. Cylinders break into either two egqual fragments
along a plane perpendicular to the axis of symmetry or n equal
strip fragments along the cylindrical wall (endcaps are ignored).
The relevant gas parameters are the ratio of specific heats y, the
ideal gas constant Ry which is adjusted for molecular weight, the
speed of sound a, of the gas, the pressure P, of the gas at burst,
the temperature T, of the contained gas at burst, the energy E of
the gas, and atmospheric pressure p,. The response term is the
velocity u of the fragment.

There are 1l pi terms or nondimensional ratios which can be
created from the above 15 parameters. Table C-2 presents one
possible list of these 11 pi terms. This list of 11 pi terms
can be reduced to a smaller number of pi terms by examining some
interrelationships among variables. Summaries of the various
relationships appear in Table C-2 and will be expanded here.
There are only two values for 2/d (np) being considered, spheres
with an 2/d of 1.0 and cylinders with hemispherical endcaps and
an £/d of 10.0. Since there are so few values of 2/d, one might
consider putting several curves on one graph. Pi terms w5 and
mg are directly related through the relationship

a_ = VyR_ T (C-1)
o} m O

For the sake of simplicity, pi term g will be eliminated.
The thickness of the vessel is related to its diameter and
the yield strength of the vessel material. Consider a sphere

as shown in Figure C-la. For the simplest design where the de-
sign thickness is much smaller than the diameter of the vessel,
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TABLE C-1. PERTINENT PARAMETERS FOR BURSTING
SPHERICAL AND CYLINDRICAL CONTAIN-
MENT VESSELS
Symbol Description Dimensions¥*
d diameter L
h thickness L
L length L
\'% volume L3
Mc mass of container FTZ/L
oy yield strength of material F/L2
n number of fragments --
Y ratio of specific heats -
RM ideal gas constant (adjusted for L2/T29
molecular weight)
a, speed of sound in gas L/T
PO burst pressure F/L2
To initial temperature of gas 8
E energy of gas FL
P, atmospheric pressure F/L2
u velocity of fragment L/T
* L = length
F = fqrce
T = time
8 = temperature
134
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TABLE C-2.

. h
1 a
L
T2 d
VO
"3 3
d
MCaO2
m
4 pad’
g
- A
5 pa
TT6 n
n7 Y
RMTO
T8 2
a
O
PO
TT9 E;
. E
10 pahd§
- 1
11 ao

g v ¥ ¥ L LK L LK L H B i

LIST OF Pi TERMS FOR BURSTING
CONTAINMENT VESSELS

proportional to (Po - pa)oy

constant (equals 1.0 or 10.0)

constant
ao = /yRMTo (see Ty and "ll)
(p_ - p.)Vv
_ o) a o
E = 1) (see Tar To and wg)
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(a) Sphere

(b) Cylinder

FIGURE C-1. DETERMINATION OF VESSEL THICKNESS
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the vessel will burst when the force exerted on the vessel walls
by the internal pressure equals the force required to break the
vessel. If one considers that the vessel (sphere) bursts in half,

one has

nd2
(PO - pa) i = cryTrdh (C-2)
or
P -pP
h _ "o ~a _
da 40 (C=3)

Cylinders must have thicker walls than spheres to contain
equal amounts of internal pressures. A simplified design for a
cylinder can be based on Figure C-1lb which shows a cylinder
without hemispherical endcaps.

The most likely plane of fracture of a cylinder made of a
homogeneous material is along the longitudinal axis as shown in
Figure C-1lb. For vessels whose thickness is much smaller than
its diameter, the vessel will burst when the force exerted on the
vessel walls by the internal pressure equals the force required
to break the vessel. If one considers that the vessel (cylinder)
bursts into two pieces as shown in Figure C-lb, one has

(P, - p,) A2 = o 2¢h (C-4)

orxr

(P_ - p_) ,
= =22 (C-5)

o
f

Equations C-3 and C-5 indicate that (h/d) is proportional to
(P - Pa)/oy and thus pi term w, can be eliminated. If one
assumes tha% only one material with one yield strength will be
used in constructing the vessel, then pi term =g can also be
eliminated.

Energy E in the gas is defined as

(P, - p,)V
_ _o a ‘o _
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Pi term wg contains p, and py, w3 contains V5, and =7 contains y.
Therefore, the energy of the gas is completely defined by these
other pi terms and pi term wnjg can be eliminated.

Variables in w5 and wng appear in m4 and wn33. It seems logi-
cal that the problem has been overdefined and that %7 and =g can
be eliminated from the analysis.

Since 73, w4 and wg have some terms in common, it appeared
beneficial to combine them. Thus, one has

Po Yo
Ty X mq _ Py d3
. = > (C-7)
4 M_a
c ©
3
p,d

Rearranging Equation C-7 and substituting Equation C-1 for ags
one has

Ty T MR T (C-8)

Substituting (P, - pa) for P, in order to emphasize the importance
of the differential in pressure between the inside and outside of
the vessel walls, one obtains the abscissa of Figure 4-2. Plot-
ting m1] with equation C-1 substituted for agy, versus the modified
version of Equation C-8 yields the desired result. Figure 4-2 in
the text consolidates the presentation of the analysis by allowing
one to plot several curves for different L/D ratios and numbers of
fragments n on one curve and still maintain accurate estimation of
fragment velocity u. Several computer checks have shown that the
curves presented in Figure 4-2 can be used for materials of
different densities and yield strengths, provided that the thick-
ness of the vessel is less than 1/3 of the diameter of the vessel.
For cylinders bursting into three or more "strip" fragments as
explained in Baker, Kulesz, et al (1975), the hemispherical end-
caps were ignored.

Some cases were run for cylinders with hemispherical endcaps
and an L/D ratio of 10.0 which burst into two unequal segments
perpendicular to the cylindrical axis of symmetry. It seemed
reasonable that the velocity of each fragment would be related to
the velocity of the fragments from cylinders bursting in half by
some constant k which depends on the unequal fragment's fraction
of the total mass of the container. Figure 4-4 in the text was

138

H ¥ ¥ U I H LK LK L H B & B B O B K B L

i



plotted from an average of several computer runs for unequal
fragments which showed amazing consistency. Note that for equal
fragments k equals 1.0. For unequal fragments from bursting
cylinders (two fragments total), one must determine the frag-
ment's fraction of the total mass and find k in Figure 4-4. Once
k is known, Figure 4-2 can be used to calculate the velocity of
the fragment.
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APPENDIX D

Estimate of Initial Velocities of Fragments from Spheres
and Cylinders Bursting Into Two Unequal Fragments

The method developed by Taylor and Price (1971) and modified
by Baker, et al (1975) for calculating velocities of fragments
from bursting spherical and cylindrical gas reservoirs was fur-
ther adapted to provide velocity calculations for unequal frag-
ments from cylindrical gas vessels. To compute the velocity of
fragments from bursting cylinders which contain gas under pressure,
the following assumptions were made:

(1) The vessel with gas under pressure breaks into two
unequal fragments along a plane perpendicular to the
cylindrical axis, and the two container fragments are
driven in opposite directions.

(2) Gas within the vessel obeys the ideal gas law.

(3) Originally contained gas escapes from the vessel through
the opening between the fragments into a surrounding
vacuum. The escaping gas travels perpendicular to the
direction of motion of the fragments with local sonic
velocity.

(4) Energy necessary to break the vessel walls is negligible
compared to the total energy of the system.

(5) Drag and 1lift forces are ignored since the distance
the fragment travels before it attains its maximum velo-
city are too short for drag and lift forces to have a
significant effect.

A schematic depicting the essential characteristics of the
modified solution for bursting cylinders is shown in Figure (D-1).
Before accelerating into an exterior vacuum, the cylinder has
internal volume Voo and contains a perfect gas of adiabatic ex-
ponent (ratio of specific heats) Yy and gas constant Ry with ini-
tial pressure Poo and temperature Tpg (Figure D-la). At a time
T = 0, rupture occurs along a perimeter II, and the two fragments
are propelled in opposite directions due to forces applied against
the area F which is perpendicular to the axis of motion of the
fragments (Figure D-1b). The masses of the fragments, M) and M,
are considered large relative to the mass of the remaining gas
at elevated pressure (Figure D-lc).

Figure D-2 contains the geometric parameters associated with
cylindrical vessels. The generalized fragment velocity solution
and subsequent computer program allow for computation of the velo-
cities of both segments of the cylinder. The vessel is assumed
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FIGURE D-1. PARAMETERS FOR CYLINDER BURSTING INTO
TWO UNEQUAL SEQVENTS
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to break into two unequal segments along a plane perpendicular to
its cylindrical axis. The cylinder can have spherical segment
end caps or can have flat faces. The vessel has cylindrical
radius r, cylindrical thickness Ct. end cap thickness Ei, cylin-
drical length Cy, and end cap length Ey, beyond the cylindrical
portion.

The Taylor and Price (1971) solution, generalized to allow
for cylindrical vessels bursting into unequal fragments, follows.
The equations of motion and initial conditions of the two frag-
ments are

a®x (1) dx, (0)
M —5— = FPl(T), with Xl(O) = 0,——3?—— =0 (D-1)
dt
2
da“x, (1) dx, (0)
My 7 = TR0 with X,(0) = 0, —5r— =0  (D-2)

where subscripts refer to each fragment and X1 is a displacement
distance taken along the axis of motion. To allow for cylindri-
cal containment vessels, the cross sectional area F over which
the force is applied becomes

F=rn(r-c,? (D-3)

The equation of state for the unaccelerated gas remaining within
the confinement of the container fragments is

PO (1) VO(T) = C(1) RTO(T) (D-4)

where subscript "o" denotes reservoir conditions immediately
after failure, R is the gas constant, P is pressure, V is volume,
T is temperature and C(t) is the mass of gas confined at high
pressure as a function of time. The rate of change of the con-
fined mass is

dc
S -k 1 x o,a, (D-5)

where

X=X, + X (D-6)

1 2’

K is the coefficient of discharge of the area between the
fragments and p, is the gas density at critical gas velocity a,.
The expression for perimeter I is

142

H U ¥ L I UM L L LE U B & B U O B B

i 2D



T ZLINAL PAGE IS
G POOR QUALITY,

r CYLINDRICAL
4 _ 2\ axis
/i
i
PLANE — :
OF FRACTURE — Z Cy t
- Cy - E,

FIGURE D-2. GEOMETRY OF CYLINDRICAL VESSELS
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II = 2nr ' (D-7)

Gas density p, and a, are standard expressions

P = po(T)(V—%—T)l/(Y—l)
1/2 (0=8)
8x T ao(T)(V—%_T>

where y is the adiabatic exponent (ratio of specific heats) for
an ideal gas. The volume is assumed to be variable and can be

described by

V0 (t) = VOo + Fx (D-9)

where x = x; + X9
Nearly all of the gas is assumed to be accelerated with the
fragments, with gas immediately adjacent to the fragments being

accelerated to the velocity of the fragments. From simple one-
dimensional flow relationships,

P (1)[1 ~ Y - 1
o 2 drt
2[aO(T)]

o1 ax, (1) 2\v/(y-1)
P ({1 - X 2 dt
° 2[ao(T)

To generalize the solution, one can use the following nondimen-
sional forms of the variables:

Pl(T)
(D=-10)

PZ(T)

Dimension: x(t) = Xg(z), Xl(T) = Xgl(C). X2(T) = ng(c)
Time: T = 8¢ (D-11)

Pressure: PO(T) = POOP*(C)

From appropriate solutions and initial conditions:

dx., (1) dx, (1)
a0 "898 —gT—=§F 95 (&)
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d2x (t) dzx (1)
l - X -~ 2 — X » .
dt 8 dt 8
drp (1) P
o) _ Y00 -
> = -5 P, (D-12)
drt
Initial conditions:
dxl(O) dxz(O)
¥ (00 = %(0) = —g7— = —q7 — = 9, (0 =

g,(0) = g7(0) = g;(0) =0

P,(0) = 1

where primes denote differentiation with respect to z. The pair
of characteristic values for dimension X and time 6 chosen by
Taylor and Price are:

2

X = Mtaoo 2
F P vy -1
loYe]

(D-13)

o - Moa ( 5 )1/2
F Poo y -1

The final derived equations contain two dimensionless groups which
define the nature of the solutions, these are

Poovoo
0T M,a 2
t oo
(D-14)
+1
5 - k( 2 >2(Y-l) 2 )l/ZHVoo
vy + 1 y -1 F§

Differences between the Taylor and Price solution for spheres and
our solution for cylinders, with spherical caps being a special
case of cylinders, occur in the determination of area F given by
Equation (D-3) and perimeter I given in Equation (D-7) where r

is cylindrical radius instead of spherical radius. A difference
also exists in the calculation of initial volume of the gas
which, for the cylindrical case with spherical segment endcaps
with one base, becomes
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2
(E, - E,)
- 2 ' - 2 8 v -
Voo = n{(r - Ct) Cz + (EQ’ - Et) [}r Et) + 3 D(D 15)

for the adiabatic case,

X _ ZlT
Y Y-1 Y-
PO(T) _ oo(T) _ TO(T) ~ ao(T)
=3 = T =13 (D-16)
[e]6] [e]0] (o]0 00

Substitution of Equations (D-10), (D-12) through (D-14), and
(D-16) into Equations (D-1) and (D-2) gives

o

22 AY/(y-1)
ML 9
S el b 5 v (p-17a)
*
by analogy,
M2 B giz Y/ (Y=1)
-bK gz = P* 1l - W (D-17b)

Differentiation of Equation (D-4) and substitution of Equations
(p-5) through (D-9), (D-11) and (D-12) yields

-~

[(-——Y Lo + g:l * o LBY g p (Y-LI/2Y o (0-18)

* a

|

In the solution for equal fragments, the fragment masses are equal,
and the equations for the motion of the two fragments become iden-
tical. However, since the fragment masses in the new solution

are unequal, the equations of motion become

-2 —WY/(Y—l)

Mo i 9
917w o (-I)/Y Y)
- %* -
(D-19)
M r— g’z _Y/(Y-l)
9= Ep, |1 ( 2 )
2 M, _ P*(wr-l)/\(

Rearranging terms in Equation (D-18) produces

146

H M N U L M L K LB H U K B B I B B kB L



B (3 -1 2 - -
) 7} (gl +9,) P, vy-1/72y _ v(gy + 9,) P,

Py, = [(Y '2' l> o + (91 92)]

For initial conditions, g,(0) =0, g,(0) = 0, g1(0) = o, g,(0) = o0,
and P,(0) = 1, nondimensidnal values‘of distance, velocity, ac-
cerlation and pressure as a function of time can be calculated by
solving Equations (D-19) and (D-20) simultaneously using the
Runge-Kutta method of numerical iteration. Dimensional values

can then be calculated from

(D-20)

+

T=06 ¢z, xl(T) = Xgl(g), xz(r) = ng(c),

- = X .- - = X 4~ _
x77 (1) =X g0, x5 () =X g7 (), P (1) =p_p.(2)

1 52 9, r Ao 52 9, " %o oo *

The computer program entitled /UNQL/ was written in BASIC
and was exercised on a Tektronix 4051 microprocessor. The com-
puter program requires input in English units and gives output
in both English and SI units. Rigorous English measure input
is not used for length and mass measurements. Instead, inches
are used for length measurements and pounds-force(weight measure)
are used for mass measurements in both input and output stages
of the program since these units are commonly used in these types
of measurements. The ratio of specific heats (y), speed of
sound (agp), initial pressure (Poo) » external radius of the cylin-
der of sphere, and the discharge coefficient are input para-
meters. The user has a choice of inputting cylinder length, end
length, cylinder thickness, end thickness, and wall density; or
volume, mass of the reservoir, and cylinder thickness (see Figure
D-2). The program also requires that a step size and limit be
added to allow for the iterative process to begin and end. Non-
dimensional times are inputted for this purpose. The user has a
choice of displaying nondimensional distance, velocity, accelera-
tion, and pressure as a function of nondimensional time and/or
displaying dimensional distance, velocity, acceleration and pres-
sure as a function of dimensional time. 1In all cases, final 4i-
mensional times, distance, velocity, acceleration, and pressure
are printed.

An explanation of the Runge-Kutta subroutine can be found in
Baker, et al (1975). This is a standard computer library function
which has nine arguments. A list of the program variables, a
listing of the program, and sample input and output follow in
Table D-1.
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In summary, the solution of the case with two unequal frag-
ments differs from that with equal halves in Equations (D-19)
through (D-21) because the masses of the two segments are not

identical. The program which follows has been adjusted to account
for these differences.
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Table D-1l. Computer Program Entitled /UNQL/ in Basic

Function: This program computes the velocity of a fragment from

a bursting sphere or cylinder, with or without spherical segment
end caps with one base, which contains gas under pressure. It

is assumed that the vessel breaks into two unequal fragments along
a plane perpendicular to the cylindrical axis. Distance, accelera-
tion and residual pressure as a function of time are also com-
puted.

Input-Output Considerations: The program accepts input in English
units only and prints output in SI and English units making any
conversions needed internally. The program considers SI units

of mass in kilograms, length in meters and time in seconds. The
program considers English units of mass in pounds of force (weight
measure used for convenience), length in inches and time in se-
conds. Input data are:

(A) Gas characteristics:

(C@) Adiabatic exponent (ratio of specific heats) for
gas in the containment vessel

(Ag) Speed of sound in gas of vessel

(Pg) Initial pressure of gas in vessel
(B) Vessel characteristics:

(R@) Cylinder radius

choice of

(21) = 1: (A) Cylinder length
(B) Length of end cap
(C) Cylinder thickness
(D) Thickness of end cap
(E) Wall density
(Z1) = 2: (A) Volume of containment vessel

(B) Mass of reservoir
(C) Cylinder thickness

(C) Dynamic variables:
(K@) Discharge coefficient
(X8) Nondimensional time increment for calculations

(X9) Maximum nondimensional time calculation
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(D) Input/Output format:

(F9) Fraction of total cylinder length (or mass) for
first fragment

(F1) Display nondimensional dynamic variance
l. = Yes
2. = No

(F2) Display dimensional dynamic variance

. = Yes
2. = No

Variables: The definition and units of variables in this program
follow.
Program Units
Variable Variable Definition SI English
F2 - if-1., program displays - -

normal time, distance,

velocity, accelerations

and pressure
Cl Cy cylinder length m in
El Ez end length m in
c2 Ct cylinder thickness m in
E2 Et end thickness m in

. 3 . 3%

D@ - wall density kg/m 1b-£/in
V@ - outside volume of vessel m3 in3
vl Voo internal volume of m3 in3

vessel
V2 - wall volume of vessel m3 in3
Mg Mg total mass of reservoir kg lb-f*
V5 - outside volume of frag m3 in3

$#1

*1b-f indicates English weight measurement of pounds of force. Sea
level gravitation is assumed.
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Program
Variable Variable
veé -
V7 -
M7 Ml
M8 M2
Ccg Y
ag et
Pg Poo
R@ r
Z1 -
KJ -
X8 -
X9 -
Fo9 -
Fl -
F2 -
P5 I
F5 F
X2 X

Definition

internal volume of
frag #1

wall volume of frag #1
mass of frag #1

mass of frag #2
adiabatic exponent
sound speed

initial pressure
cylinder radius

if
if

1., input is
2., input is

gas discharge coeffi-
cient

dimensionless time
interval of iteration

maximum dimensionless
time of iteration

fraction of total cy-
linder length (or mass)
for frag #1

if = 1., program
displays

if = 1., program
displays

perimeter(calculated)
area of cross-section
to which force is
applied(calculated)

characteristic dimen-
sion(calculated)

H U N E I UL E L L H LK i

Units
SI English

3 . 3
m in
m3 in3
kg lb-f*
kg lb-f*
m/s in/sec
Pa psi
m in
m in

2 .2
m in

2 .2
m in
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Program Units

vVariable Variable Definition SI English
0 0 characteristic time s sec
{calculated)
c7 - quantity (y/(y-1) -- --
C8 - quantity (3y-1)/2y - -
Cco9 - quantity (y+1)/2(y-1) - -
Q1 o dimensionless parameter - --
Bl 8 dimensionless gecometry - -
parameter
X - normalized time - -
Y(1) - normalized initial - -
displacement of
frag #1
Y (2), - normalized velocity - -
F(l)* of frag #1
Y (3) - normalized pressure -- -
Y (4) -— normalized initial - -
displacement of
frag #2
Y(5), - normalized velocity - -
F(4)* of frag #2
F(2)* - normalized accelera- -— -

tion of frag #1

F(3)* -- normalized rate of - -
change of pressure

F(5)* . - normalized acceleration - -
of frag #2
Q2 -— guantity [(y-1)/2]a +
(g; + 95)
U g” (gi + gi) quantity - -
TS - normalized time(output) - -

*indicates differential eguations solved.
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Program

Variable Variable
G Gl
Gl gi
G2 gi’
P9 P,
G3 9,
G4 gé
G5 gé'
T1l, ES -
H1l, E6 --
H2, E7 --
H3, E8 -
H4, E9 -
H5, S6 --
H6, S7 -
H7, S8 -

U b M L b L L L L H K i«

Definition

normalized distance of
frag #1 (output)

normalized velocity of
frag #1 (output)

normalized acceleration
frag #1 (output)

normalized pressure
(output)

normalized distance of
frag #2 (output)

normalized velocity of
frag #2 (output)

normalized acceleration
of frag #2 (output)

time (output)

distance of frag #1
(output)

velocity of frag #1
(output)

acceleration of frag
#1 (output)

pressure (output)

distance of frag #2
(output)

velocity of frag #2
(output)

acceleration of frag
#2 (output)

Units
sI English
s sec
m in
m/s in/sec
m/s2 in/sec2
Pa psi
m in
m/s in/sec
m/s2 in/sec2
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APPENDIX E

MODEL ANALYSIS FOR FRAGMENT TRAJECTORIES

In order to generalize the analysis for determining the range
of a flying fragment from a bursting spherical or cylindrical con-
tainer, a model analysis was performed.
ting the fragment range and the subsequent computer program
(FRISB) are presented in detail in Baker, et al (1975). However,
for the sake of clarity, a brief discussion of this analysis is
presented below,

The analysis for calcula-

The equations for calculating the horizontal and vertical
(X and Y) accelerations of a fragment are as follows:

where

X X

@ B D P O P 0O KidiK
O P+ U v

Q
[*8

[Te]
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-5 e .
ADCDpO(X + Y )sin «a ALCLpO(X

2 + Yz) cOs a

(E-1)

-9 - M +

°2 02 02 02 .
ADCDpO(X + Y®)cos a _ ALCLpo(X + ¥7) sin o

M

(E-2)

X = M

= range, m
= altitude, m

= horizontal velocity

= vertical velocity

= horizontal acceleration
= vertical acceleration

= drag coefficient

= drag area

= 1lift coefficient

= 1lift area

= density of air, kg/m3

= mass, kg

= trajectory angle, rad

= 1initial trajectory angle, rad

= acceleration of gravity
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at t = 0

<
I

V.Ccos o, (E-3)
i i

Y

Vv.sin o, (E-4)
i i

By solving the two second-order differential equations simulta-
neously, one can obtain velocity, and by numerically integrating
the velocities, one can obtain the displacement, i.e., fragment
range.

The first step in performing the model analysis was to list
all of the pertinent physical parameters in the analysis, i.e.,
drag coefficient, drag area, lift coefficient, 1lift area, mass,
etc., together with their fundamental dimensions, in a mass,
length, and time (M, L, T) system. This list is presented in
Table E-1. It should be noted that since the coefficient of 1lift,
the lift area, and the density of air are interrelated as are the
coefficient of drag, the drag area, and the density of air, they
were combined as shown in Table E-1. These dimensional para-
meters were than combined into a lesser number of dimensionless
groups (pi terms) by the methods of dimensional analysis as out-
lined in Baker, et al (1973). Table E-2 presents the dimension-
less parameters in pi terms. It should be noted that this set of
pi terms is not a unique set and that other combinations of pi
terms are possible. It should also be noted that the number of
pi terms equals the number of original dimensional parameter
minus the number of fundamental dimensions.

For the special case of the fragment whose geometry is such
that there are no lift forces acting on it, the fourth pi term
listed on Table E-2 drops out of the model analysis.
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TABLE E-1

LIST OF DIMENSIONAL PARAMETERS

Parameter Dimension
CpPpPo M/L
CLBf0 M/L
v L/T
M M
g L/T?

R L
a _
TABLE E-2

DIMENSIONLESS PARAMETERS (PI TERMS)

'ﬂ'l o
2
" PoCpipV
Mg
" 0 oCpApR
M
ﬂ4 CLAL
CpPp
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APPENDIX F

ROCKETING OF STORAGE AND TRANSPORTATION VESSELS

In an accident involving propellart (propane, butane, etc.)
storage systems, fragments are often generated and propelled by
the force of an explosion. The fragments generated in an explo-
sion which travel large distances typically are of much smaller
mass than that of the storage vessel. However, in some instances,
a large portion or portions of the vessel (greater than one-
fourth) will break free lntact and will travel larger distances
than would be possible solely from the force of the explosion.
These large fragments exhibit a rocketing behavior (see Appendix
H) which results from the changing of the liquid propellant into
a gas when the external pressure is released during the fractur-
ing of the vessel. The gas escapes from the opening in the
vessel in a manner similar to gas exiting a rocket motor and
propels the, somewhat stabilized, fragment to great distances.

Figure F-1 schematically demonstrates the fragment rocketing
process. After a portion of the vessel breaks off, the remaining
portion of the tank emits gas out of its open end as the fluid in
the tank vaporizes. This mass flows out of the aft end of the
tank and produces a force F(t) in the direction opposite to the
mass flow which varies as a function of time t, and the tank
accelerates along a trajectory angle 6 with respect to the hori-
zontal axis (ground). The force of gravity Mg also acts on the
vessel inhibiting its vertical ascent. Since every action has an
equal and opposite reaction, the vertical and horizontal inertial
forces My and My, respectively, complete the simplified free-body
diagram i1n Figure F-1. Note that for the purposes of this analy-
sis, drag and lift forces are assumed to be much smaller than
the thrust and gravitational forces and are ignored. It is also
assumed that the "rocket" never changes its angle of attack 8
during its flight.

The equations of motion for this simplified rocketing problem
are then

M(t)g + M(t)y - F(t)sin 6 = 0 (F-1)

and
M(T)x - F(t) cos 6 = 0 (F-2)
Note that the mass (mass of the fragment and its contents) as well

as the force, changes with time. From basic rocketry, the thrust
F is
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FIGURE F-1. ROCKETING FRAGMENT
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U
e
= — + - F-3
F Ae . V. g Pe Po ( )
e
where
A = exit area
e
Ue = exit velocity
Ve = specific volume of the gas
g = gravity constant
P, = exit pressure
P, = atmospheric pressure

Balancing the energy in the system, one has

Ue2
= 4+ —— -
hi + g he g (F-4)
where
;= enthalpy of the gas at time ty
q = energy expended in heating the gas
he = enthalpy of the gas at the nozzle (exit)

If the gas expansion is isentropic, g = 0, and Equation (F-4)
reduces to

2

Ve
2—9- = hl - he (F—S)

Flow continuity gives
wv = AU (F-6)
where w is the mass flow rate.

To determine the fragment's trajectory, one starts with a
wet vapor in a tank having known initial state conditions of
pressure p;, sSpecific volume v, entropy sj, and enthalpy hj
which can be determined from tables of thermodynamic properties.

One next assumes isentropic expansion through the nozzle, That
is,

S. =s =8, (F-7)
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where s, is the entropy of the gas at the nozzle (exit) and
si + 1 1S the entropy at time ti +1°

When the backpressure Pq is less than the critical pressure
Pe given by

P, = 0.58 p; (F-8)

the flow will be sonic and pg in Equation (F-3) equals pc. When
the backpressure Po is greater than the critical pressure pc,
then pe equals p, in Equation (F-3). Also, the pressure in the

vessel at time ti + 1 18 given by

P; 4+ 1 = Pe (F-9)

Equations (F-7) and (F-9) allow one to obtain the value for
hy, the enthalpy at time tj + 1, from the table of thermodynamic
properties once one knows the values of se and pe. Equation
(F-5) gives Ug, and the thrust obtained by substitution into
Equation (F-3). At the exit, Equation (F-6) gives

wv_ =AU (F-10)

e e e

where ve is also obtained from the thermodynamic tables. 1In
reality, the state variables of the gas within the tank change
continuously, but, for computational purposes, we will assume
quasi-steady flow. From Equation (F-10), one can obtain the mass
flow rate w and calculate a new total mass of the fluid after a
small time At from

M. =M, - % st (F-11)
g
After this time, a new specific volume can be determined from

= __V__ (F-12)

where V is the total volume of the fragment. Knowing vj , j one
can then obtain pj 4 ; from the table of thermodynamic properties
of the gas and start a second iteration.

The above iteration process continues until backpressure pg

is greater than the critical pressure in Equation (F-8). Then
the flow becomes subsonic and Equation (F-3) reduces to
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(F-13)

Some thrusting will continue until the internal pressure p, egquals
Po: and the state of the gas in the vessel after n iterations lies

on the py isobar.

To complete the process of calculating tank acceleration,
velocity, and position one must solve Equations (F-1) and (F-2)

during each iteration.
tions is given by

. Fisine
Yi T 7w, "9
i
and
- F.cos®
X =L———
i M,
i

Assuming the thrust F;

The acceleration in the y and x direc-

(F-14)

(F-15)

and mass of the vessel and enclosed sub-

stance Mj to be constant during the time step At, one can obtain
velocity for time tj 4 1 by integrating Equations (F-14) and

(F-15) obtaining

Fisine .
Yi +1 At M, -9 Y (F-16)
i
and
Ficose
'l +1 - At T + X (F-17)
i
where
y(o) = x(o) =0
Integrating Equations (F-16) and (F-17), one can obtain displace-
ment from
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Y. = = W 9] tuy; et +y, (F-18)

and

M,

' 2 F.,coss
_ At i . _
X. = = ( : ) + X4 At + X4 (F-19)

n
(=]

where y (o) = x(o)

The thermodynamic processes followed by the expanding fluids
are shown on the pressure-volume (p - v) plane and temperature-
entropy (T - s) plane in Figures 1-1 and 1-2, respectively.

A computer program entitled "THRUST" was written to perform
computations for determining acceleration, velocity, and position
of a thrusting fragment as a function of time, as explained.

The program was written in BASIC and was run on a Tektronix 4051
microprocessor. The program was exercised using the state prop-
erties of propane gas to compare with measurements made after
propane/butane accidents (Appendix H). The program was written
with enough flexibility to allow for rocketing calculations of
large portions of vessels containing other types of gases. To
change the contained gas, one merely inputs the state variables
of the appropriate gas at the beginning of the program. Linear
interpolation was used to estimate values of the state variables
between those acquired from the thermodynamic properties tables
[Din (1962)]. Table F-1 contains a list of the program variables,
a listing of the program, and sample input and output.
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TABLE F-1

COMPUTER PROGRAM ENTITLED "THRUST" IN BASIC

FUNCTION: This program computes the acceleration, velocity, and
displacement of a fragment containing a vaporizing liquid. It is
assumed that a large portion of a vessel containing a liquid/gas
mixture in equilibrium at greater than atmospheric pressure
separates from the rest of the storage vessel. As the liquid
underpressure converts to a gas when exposed to atmospheric pres-
sure, thrust is produced causing the fragment to "rocket".

INPUT-OUTPUT CONSIDERATIONS: This program is written in BASIC
computer language and is compatible in its existing form with a
Tektronix 4051 microprocessor. Thermodynamic properties of the
gas to be considered are stored in arrays on files using the pro-
gram for storing data arrays contained in Table F-2. Input data
follow.

A, Thermodynamic properties of the liquid/vapor:

1) entropy (S) in cal/mole, °K
2) enthalpy (H) in cal/mole

3) specific volume (V) in cm3/mole
B. Vessel characteristics:

1) launch angle (Al) in degrees

2) volume of the vessel (V0O) in cubic meters
3) volume of the fragment enclosure (V1) in cubic meters
4) exit area (A) in square meters

5) mass of the fragment (M) in kilograms

c. Initial conditions of the liguid/vapor:
1) initial pressure (Pl) in Pascals
2) volume of the liquid (V8) in the vessel in cubic meters
3) volume of the vapor (V9) in the vessel in cubic meters
D. Dynamic variable:
1) time step (T) in seconds
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VARIABLES

The program variable, identifying variable in the derivation
above, definition, and units of variables in this program
follow.
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COMPUTER PROGRAM LISTING AND SAMPLE OUTPUT
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TABLE F-2
PROGRAM FOR STORING DATA ARRAYS
Function: This program stores data arrays in files on tape.

The program is written in BASIC and is compatible with a
Tektronix 4051 microprocessor.
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APPENDIX G

MODEL ANALYSIS FOR ROCKETING OF STORAGE AND TRANSPORTATION VESSELS

The model analysis used here is patterned after the techni-
ques explained in Baker, Westine and Dodge (1973). The purpose
of the model analysis is to devise a method of consolidating the
results of the computer runs made to predict the ranges of frag-
ments which exhibit "rocketing" behavior as explained in
Appendix F.

To conduct the model analysis, it is necessary to list all
of the physical parameters which are indigenous to the problem.
It is better to overdefine the important parameters initially
than to leave out potentially pertinent items. Unnecessary para-
meters or parameters which weakly affect the results can be
eliminated after the nondimensional pi terms are ascertained.

A listing of these parameters is contained in Table G-1 which
includes vessel characteristics, gas characteristics, and res-
ponse parameters. Since we will ignore drag and lift forces (see
Appendix F), the pertinent vessel characteristics can be limited
to the internal volume V of the fragment, the exit area A, the
mass M of the fragment, and the initial launch angle o. Relevant
gas parameters are the ratio of specific heats y of the gas, the
ideal gas constant Ry, the temperature T of the liquid/vapor at
rupture, the volume of vapor to volume of liquid ratio V/Vj, the
pressure P of the gas at rupture, and the atmospheric pressure
Pa- The acceleration g due to gravity is also important since it
affects the vertical travel of the thrusting fragment. Pertinent
response terms are the velocity u of the fragment and the dis-
tance X traveled by the fragment.

There are nine pi terms or nondimensional ratios which can
be created from the above 13 parameters. Table G-2 presents one
possible list of these nine pi terms. This list of nine pi
terms can be reduced by making some simplifying assumptions.
Since we were unable to readily locate the thermodynamic proper-
ties of butane and since most of the accidents examined involved
propane for which we did have the thermodynamic properties, only
rocketing due to the expansion of propane was considered. Since
the ratio of specific heats y in this case is constant, =] can be
eliminated. Since the gas is constant, Ry is constant. The
acceleration g due to gravity is nearly constant on earth and is
also contained in mg, temperature T is proportional to pressure P
and V which are contained in g, Tg, m7, and wg. Thus ny can be
eliminated. 1If one assumes that atmospheric pressure pz is con-
stant nd one observes that internal pressure P is contained in
Tgr Tg Can also be disregarded. Finally, we are not concerned
with the velocity u of the fragment, a response term, and the
volume V of the fragment is contained in n.. Thus 1~ can also
be eliminated. No other simplifications are readily discernible.
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TABLE G-1

Pertinent Parameters for Rocketing Fragments

Symbol Description Dimensions*
\'4 internal volume of the fragment L3
A exit area L2
M mass of the fragment FT2/L
a launch angle -
Y ratio of specific heats of the gas --
RM idea} gas constant (adjusted for molecular Lz/Tze
weight
T temperature of the liquid/vapor at rupture 8
Vv/V1 volume of vapor to volume of liguid ratio -—
P pressure of the gas at rupture F/L2
Pa atmospheric pressure F/L2
g acceleration due to gravity L/T2
u velocity of the fragment L/T
X distance traveled by the fragment L
* L = length
F = force
T = time

6 = temperature
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TABLE G-2

LIST OF PI TERMS FOR ROCKETING FRAGMENT

'n'l Y
wz RMT
é;i73
™ \AAN
TT4 0]
1r5 A -
vz;3
Tr6 M
;%773
TI’7 u
;172v175
m
P
8 B
a
TI'9 X
;173
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Therefore, one finds that the distance traveled by a fragment ex-
periencing rocketing due to the expansion of a single gas (pro-
pane in this case), depends upon the relative volumes of the

vapor and liquid at fracture (Vy/Vj), the launch angle (a), a vent
area to fragment volume (A/vV2/3), and a ratio of inertial force

to the force of the gas inside the vessel (Mg/Pv2/3). Represent-
ing these observations in equation form, one has

v
X \4 A Mg (G-1)

= f oy O ’
1/3 Vl V2/3 PV2/3

Several computer runs were made to simulate actual accidents
recorded in accident reports. Because these accidents were not
experimental tests, some parameters such as launch angle and
internal pressure of the tank at rupture had to be assumed. 1In
spite of these obvious obstacles, the predicted values for dis-
tance traveled by the fragments, in most instances, correlated
well with accident report observations. A summary of these com-
parative computer runs is contained in Table G-3. When one ob-
serves the sensitivity of fragment range to launch angle in this
table and in Table 4-2 and keeps in mind the limitations on pre-
dicting launch angle from the accident reports, one can readily
appreciate the apparent accuracy of the computer program.

Due to the complexity of the thrusting process (explained in
greater detail in Appendix F) and limitations on the number of
computer runs performed, no reduction of the five parameter space
described by Equation (G-1) was readily apparent. Until further
analysis can be performed for propane and other gases, it is
recommended that the reader use the results contained in Table
G-3 and Table 4-2 where appropriate or actually exercise the
computer program.
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APPENDIX H

Accident Data and Statistical Fitting to Fragment Data

A literature search was conducted in which accident reports
and other available, related data sources were reviewed for in-
formation on characteristics of fragments and pressure waves of
bursting thick-wall, compressed fluid storage and transportation
vessels. Fluids and gases considered in the survey were propane,
anhydrous ammonia, oxygen, argon, air and propylene. Organiza-
tions and contractors contributing sources included the National
Transportation Safety Board, Naval Surface Weapons Center, NASA
Langley Research Center, Department of Transportation, National
Technical Information Service and Ballistic Research Laboratory.
Also, an incident which occurred in San Antonio, Texas during the
accumulation of data, in which a propane storage tank exploded,
was personally investigated by two staff members, W. E. Baker
and L. M. Vargas, for information on energy release. The missile
map developed as a result of this investigation proved very useful
in determining effects of fragment impact. Data obtained from
this literature were organized in a logical manner for the subse-
quent analysis. Records of the data include the reference and
date of the explosion; the quantity of the explosion source; the
estimated energy release; the shape, volume, mass, material and
dimensions of the container vessel; the number of fragments; the
masses, ranges, trajectory elevations (if given), drag coeffi-
cients and shapes of the fragments; and any additional pertinent
information. Each vessel is assigned an identifying number.
Twenty-five vessel explosions form the data base. These data are
given in Tables H-1 and H-2.

In order to uncover any trends in terms of different vari-
ables which affect the chracteristics and effects of fragment im-
pact and pressure waves, all the data were tabulated in terms of
absolute numbers, percentiles, means, standard deviations and
variations in information. The tabulations and analyses of
different combinations of variables follow. A bibliography of
sources utilized is also included.

Derivation of Fragment Range Distributions

(Figures 4-6 and 4-7)

The fragment range data for each of the six event groups (see
Table 4-3) were sorted in ascending order. For event groups 1, 2,
3, 4 and 6, the values for the range for the 10th to the 90th
percentile in 10% steps were identified. For event group 5, the
values from the 14.3 percentile to the 85.7 percentile in 14.3%
steps were identified. Table H-3 is a listing of these values.
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TABLE H-3. PERCENTILES FOR PLOTTING FRAGMENT
RANGES OF THE SIX EVENT GROUPS

Event Group Numbers
Percent 1 2 3 4 5 6
10.0 20.00 15.24 22.35 32.00 15.24
14.3 : 168.27
20.0 40.00 19.81 40.64 51.51 17.68
28.6 202.69
30.0 60.96 27.43 54.19 60.65 25,20
40.0 91.44 30.48 66 .38 76.02 28.35
42.9 220.07
50.0 161.00 60.96 68.41 85,04 31.39
57.1 346.25
60.0 182.88 94.50 88.05| 136.86 41.76
70.0 182.88 | 133.40 | 109.73 | 164.59 58.83
71.4 423,37
80.0 228.60 | 167.64 | 115.82 | 238.96 119.79
85.7 512.06
90.0 487.68 | 335.28 | 206.59 | 373.73 122.83
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Figures H-1 through H-6 are plots of the percentile points
on log normal probability paper for each of the respective six
events groups.

Table H-4 is a listing of the estimated means and standard
deviations for the log normal (to the base e) distributions.

A "W" statistic [see Hahn and Shapiro (1967)] for goodness
of fit was calculated for each of the distributions. The approxi-
mate probability of obtaining the calculated test statistic,
given that the chosen distribution is correct, was then deter-
mined. The results are shown in Table H-5.

Deviation of Fragment Mass Distributions

(Figures 4-8 and 4-9)

Sufficient pertinent mass data were available only from
event groups 2, 3 and 6. Table H-6 is a listing of the percen-
tiles of these event groups.

Figures H-7 through H-9 are Plots of the percentile points
on log normal probability paper for each of the respective event
groups.

Table H-7 is a listing of the estimated means and standard
deviations for the log normal (to the base e) distributions.

The calculated "W" statistic along with the approximate
probability of obtaining the calculated test statistic, given that
the chosen distribution is correct are presented for each of the
three event groups in Table H-8.

Correlation Analyses of Fragment Range and Fragment Mass Within
Event Groups

(Figures 4-11 and 4-12)

For each of the three event groups (2, 3 and 6) with suffi-
cient fragment range and mass data, three models were exercised
to determine the degree of correlation between fragment range
and mass. The three models and equivalent equations were:

1) Linear -

R=a+bM

2) Power Curve -

R = aMb
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TABLE H-4.

LISTING OF ESTIMATED MEANS AND STANDARD

DEVIATIONS FOR LOG-NORMAL RANGE DISTRIBUTIONS
(TO THE BASE e) FOR THE SIX EVENT GROUPS

Event Group
No.

1
2

238
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Estimated
Mean

4.569939
4.103086
4.275966
4.633257
5.660840

3.668606

Estimated Standard

Deviation

i

0.906041
1.062895
0.646206
0.785540
0.446785

0.758061
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TABLE H-5. SUMMARY OF "W" TEST ON NORMALITY FOR
FRAGMENT RANGE DISTRIBUTIONS FOR
EVENT GROUPS 1 THROUGH 6

Event Group No. "W Probability
1 .964 .82
2 .951 .68
3 .986 .98
4 .980 .95
5 .936 .57
6 .917 .28

As it is customary to consider values exceeding 2 to 10% as
adequate grounds for not rejecting the hypothesis that the data
belong to the chosen distribution, the fits for the six event
groups are more than adequate.
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TABLE H-6. PERCENTILES FOR PLOTTING FRAGMENT MASSES
OF EVENT GROUPS 2, 3 AND 6
Event Group Numbers
Percent 2 3 6
10 74.8 93.61 .0341
20 94.8 241.98 .967
30 220.0 399.28 .998
40 350.0 1,039.52 1.00
50 1.180.0 1.080.29 1.22
60 3,183.0 1,281.78 9.30
70 7,470.0 1,439.81 52.23
80 12.200.0 1,935.88 104.46
90 19,098.0 2,020.84 171.38
240
I ¥ U L L L LK LK L KB & & E H

i B & L L



, ) , SSVW ‘NOIINYINISIA ALITIOYHOHNd
(6T ‘ST ‘%1 ‘€T ‘0T ‘6 ‘8 ‘L ‘9 SINIAF) 7 dNOYS LNFAT *L-H EN9Ia

(6Y) ‘W SSYW INWOVJS
0009 000V 0002 000T 009 OOV

B R B IS T A

0000t

241

B 0 0 B K L L

il

ol

oz

0%

o CETLA ENS 5 4 6 i 14 i RS R I S 0 Y A O A cuN_._.<uo_|@
R B B I B O e s OO /11101 —

- o __"

L]

oL

14

JOVINIO¥3d
| I

L

L

o U H L L U



444

§

Y FORTY Y e

ana

TR

1000 2000 4000 6000 10000

400 600

W

) SO

JUUTY BN foed ot B8

BEEEET

e 4
L T Ayes 3y

Lol menn

-4 Q
W -

Q
@

JOVINID Y

[~
L]

<
[ ]

200

~ -

(kg )

FRAGMENT MASS M

MASS

EVENT GROUP 3 (EVENT 17) PROBABILITY
DISTRIBUTION,

FIGURE H-8.

242

L

b

i L L K L L Lk B 4 B B B

L

u

i U K




OF POOR QUALITY

ORIGINAL PAGE IS

SSYW ‘NOILNYIMLSIA ALITIEVEOMd (S¢ INIAH) 9 dNO¥D INAAF

(BX) ‘W SSW INawovd

"6-H HINOIA

0°02 00t 09 0V 0°¢
Sl L T i

243

B 0 B K Lk L

kL

K

— .'}_: : \‘r

g ¢ 8
JOVINIDAId

L L L

L L

L

L L



(G2 ‘6T ‘8T ‘L Pue 9 SINAAT) STASSHA TVOIMANITXD
¥04 LHOIAM ANV OL LHOIIM INIWOVHA NVIW JO OILVY FHL SASHIA FONVY ‘0T-H HHNOTA

(CL)M) 1HOI3M T3SS3A OL ( M) 1HOIIM INIJHId NVIW TVNLIY

0°1 9°0 v0 ¢0 10 90°0 00
T 1 T 1 ] I T LA L T 0
(%4
X
b m s
-0
= - 8 W
!
=
= — 021 3
(£86°0 SI ‘4 ‘IN3ID144300 NOLLVIIWN0D )
- —
A3Z1VIal — 091
\ 1'9 INIAT A8 TVNALDY X
[ S ] | 1 | T N R S ] 002

18
pAGE
e QU pu™

GIN

ORY

ofF ¥
H U 11 B B L L

i I

I

L L L H L

L U

L

244

U u A



TABLE H-7. LISTING OF ESTIMATED MEANS AND STANDARD
DEVIATIONS FOR LONG-NORMAL FRAGMENT MASS
DISTRIBUTIONS (TO THE BASE e) FOR EVENT
GROUPS 2, 3 AND 6

Event Estimated Estimated Standard
Group No. Mean Deviation
2 7.049131 2.117124
3 6.617446 1.051264
6 1.418576 2.784658

TABLE H-8. SUMMARY OF "W" TEST ON NORMALITY FOR
FRAGMENT MASS DISTRIBUTIONS FOR EVENT
GROUP 2, 3 AND 6

Event Group No. W Probability
2 .920 .37
3 .860 .10
6 .914 .32
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3) Logarithmic Curve -
R = a + blnM

Table H-9 is a listing of fragment range and mass for the
three event groups. Table H-10 contains a listing of the
estimated parameters and correlation coefficients for each model

for each event group.

From Table H-10, the largest correlation coefficients over
each of the three models are .79, .35, and .68 for the event
groups 2, 3 and 6, respectively. These values of r can be trans-
formed to a normal variate, Z, by the following formula [arkin
and Colton (1950)]:

Z=.5[1ln (1 +r) - 1n (1 - ©)] (H-1)
The standard error of Z,oz, is:

Oy = 1/(N - 3) (H-2)

where N is the number of fragment range-mass pairs in Table H-9
an event group.

A 95% confidence limit (Lg) on the range of sampling varia-
tion on Z can be set by:

L, =2+ 1.96 o, (H-3)

Then, the 95% confidence limit on r can be established by sub-
stituting the two values of Ly (one at a time) into Equation
(H-1) for Z, and solving for r.

The 95% confidence limits on r for the three event groups

are:
1) Event group 2
.70 < r < .85
2) Event group 3
.39 < r < .43
3) Event group 6
.61 < r < .74
246
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TABLE H-9.

LISTING OF FRAGMENT RANGE AND MASS

FOR EVENT GROUPS 2,

3 AND 6

Event Group 2

Event Group 3

Event Group 6

|
Range Mass l[Range Mass Range Mass
112.9 74.8 233.0 2.22 31.39 .0341
19.9 94.8 63.37 93.61 28.35 .0967
73.6 183.0 115.82 237.66 25.2 .998
94.5 220.0 4.064 224.70 41.76 1.00
21.2 350.0 292.61 241.98 15.24 1.22
104.2 1150.0 29.13 387.18 17.68 1.22
145.7 1180.0 5.42 399.28 40.23 1.56
15.24 3183.0 206.59 470.70 58.83 9.3
30.48 6366.0 69.77 903.1¢% 119.79 52.23
15.4 7470.0 112.44 1039.52 31.39 104.46
133.4 12200.0 66.38 1039.52 122.83 171.38
487.68 19098.0 65.70 1080.29
335.28 19098.0 63.00 1082.13
110.41 1134.30
97.54 1281.78
39.96 1345.72
44.03 1439.81
54.19 1627.08
191.69 1703.20
207.94 1935.88
64.41 2007.72
73.15 2020.84
75.86 2223.24
h 32.51 2399.70
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Since one can be 95% confident that the correlation coeffi-
cient for event group 3 is less than .43, there would be little
benefit in using the corresponding prediction model for fragment
mass given fragment range, or vice-versa. However, for event
groups 2 and 6 a sufficient degree of correlation between fragment
range and fragment mass is indicated to make the prediction models
worthwhile. These models are shown on Figures 4-11 and 4-12.

Correlation Analysis of Fragment Range to the Ratio of Mean
Fragment Weight to Vessel Weight For Cylindrical Tanks

Five events with cylindrical tanks contained sufficient
fragment mass information to determine the degree of correlation
of fragment range to the ratio of mean fragment weight to vessel
weight. It was necessary to group events 6 and 7 to have a

sufficient sample size.

Table H-1l presents the data by event number, the ratio of
the arithmetic mean fragment weight (W) to the vessel weight
(W(T)), and the arithmetic mean fragment range (R). Figure H-10
is a plot of the points in Table H-11l along with the prediction
equation. The sample correlation coefficient is .987. Using the
same techniques as described earlier, one can be 90% confident
that the true population correlation coefficient is greater than

.74.
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TABLE H-11, MEAN RANGE AND RATIO OF MEAN FRAGMENT
WEIGHT TO VESSEL WEIGHT FOR CYLINDRICAL

TANKS
Event W/W(T) R
6,7 .644 179.83
18 .242 110.30
19 .100 80.08
25 .0612 39.20
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English Symbols

a gas

[

g U K L L L L LK L H L i

LIST OF SYMBOLS

cross-sectional area; loaded area; differential

volume

speed of sound in surrounding atmosphere
drag area

exit area

lift area

conditions in surrounding atmosphere; range
axis intercept

critical gas velocity
sound speed of gas
speed of sound

loaded width, slope
drag coefficient

lift coefficient

lift/drag ratio

cylindrical length

cylindrical thickness

confined at high pressure as a
time

mass of gas
function of

coefficient relating maximum bending shear
stress to the maximum

coefficient to relate stress to deformations
caliber density of the projectile

coefficient; projectile diameter; pipe
outside diameter

differential length
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(g% ax maximum slope

blast yield (energy); elastic modulus

E- = blast yield (energy) for bursting pressure
vessels .

EC = total heat of combustion

Ee = effective blast yield

EK = kinetic energy of the fragment

Ez = end cap length

Eg = energy of detonation of 1 gram of TNT

E¢ = end cap thickness

e = specific energy; specific work; perforation

thickness
F = thrust; cross-sectional area; force
fé = ultimate concrete compressive strength

subscriptf = fluid (saturated liquid)

g = acceleration of gravity; gravity constant

Yy g = square root of the acceleration of gravity
subscriptg = gas (saturated vapor)

H = total depth

H = scaled height

ﬁg = scaled gage height

h = enthalpy; concrete panel thickness; height
he = enthalpy of gas at nozzle

hi = enthalpy of gas

I = second moment of area

T = scaled (dimensionless) impulse

Is = side-on specific impulse
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I_(-) = negative phase impulse for first shock

s

Is(+) = positive phase impulse for first shock

Tg = scaled (dimensionless) side-on overpressure

i = impulse

ir = reflected impulse

iS = positive impuige

K = coefficient of discharge; constant; concrete
penetrability factor

KE = impact kinetic energy

L/D = length-to-diameter ratio

LZ = confidence limit

2 = length; span

M = total mass; mass of the overlying floor

Mc = mass of the container

Mg = force of gravity

Mi = enclosed substance

' My = vertical inertial force

My ' = horizontal inertial force

(MW) = molecular weight

m = mass of the liquid in the vessel

N = number of fragment-mass pairs; projectile
nose-shape factor

n = number of fragments

o = reservoir conditions immediately after failure

P = peak applied pressure; pressure; internal
pressure

P = average burst pressure
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P = atmospheric pressure

?A = starting overpressure

P-i = nondimensionalized pressure impulse

Poo = initial pressure

Pr = peak reflected overpressure

Pg = peak side-on overpressure

ﬁé = dimensionless overpressure

Psl = first shock side-on overpressure

Psz = second shock side~on overpressure

PV/E = normalized yield

P = absolute pressure

P = initial absolute pressure in the vessel

pl’Vl'Sl' = jinitial state variables

Uprhy |

PA = vertical load

Py = outside atmosphere absclute pressure; ambient
pressure; atmospheric pressure

) = critical pressure

Pe = exit pressure

P, = internal pressure

Po = atmospheric pressure; back pressure

p-v = pressure-volume plane

o = energy expended in heating gas

R = range

R = dimensionless distance; scaled distance;

mean fragment range

ideal gas constant

e
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r = correlation coefficient; cylindrical radius;
distance along the plane of symmetry from the
center of tank

s = entropy, scabbing thickness

S5 = final entropy

Se = entropy of gas at the nozzle (exit)

T = absolute temperature

T = scaled (dimensionless) time

To = temperature of the gas

Too = temperature

T-s = temperature-entropy plane

Ts(-) = duration of negative impulse for first shock
Ts(+) = duration of positive impulse for first shock
ty = pipe wall thickness

U = mean fragment velocity

U = exit velocity

u = internal energy; velocity

v = maximum shear force; shear force

Vl = vessel volume

Vo = internal volume

Voo = internal volume

Vg = missile striking velocity

VV/Vl = volume of vapor to volume of liquid ratio

v = specific volume

v2,u2,h2 = thermodynamic parameters

Ve = specific volume

Ve = final volume occupied by the gas originally in

the vessel
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= geometric mean fragment mass; mean fragment

w weight

WK = maximum possible work

W(T) = sphere weight, vessel weight

Wo = deformation

w = mass flow rate

Wy = maximum elastic deformation

X = distance traveled by the fragment

Xl = displacement distance along the axis of
motion

X = horizontal acceleration

X = quality of the vapor; characteristic dimension;
total penetration depth; the depth a missile
will penetrate into an infinitely thick target

Xy = initial quality

X, = final quality

b4 = horizontal velocity

Y = altitude

Y = vertical acceleration

é = vertical velocity

pA = normal variate, dimensionless variable

z = plastic section modulus

Greek Symbols

o = trajectory angle

a = jnitial trajectory angle, coefficient for
simply-supported beam

ap = numerical coefficient
Y = ratio of specific heats, adiabatic exponent
Y1 = ratio of specific heat for gas in the vessel
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At = small time

o] = deflection

€ max = maximum strain

8 = trajectory angle, characteristic time,
temperature

n = perimeter

o} = mass density

Pu = gas density

pPgA = weight per unit length quantity

o = density of air

omax = scaled stress

Oy = yield strength

04 = ultimate stress

cy = yield point

G

—% = yield strain

Eemax = gcaled strain

—

y

o, = standard error of %

T = time

wp,i,e,w = coefficients
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CONVERSION FACTORS

The following table provides multiplying factors for con-
verting numbers and miscellaneous units to corresponding new

numbers and SI units.

The first two digits of each numerical entry represent a
power of 10. An asterisk follows each number which expresses
an exact definition. For example, tgﬁ entry "~=02 2.54*" expres~
ses the fact that 1 inch = 2.54 x 10 meter, exactly, by
definition. Most of the definitions are extracted from National
Bureau of Standards documents. Numbers not followed by an aster-
isk are only approximate representations of definitions, or
are the results of physical measurements, The accepted abbre~
viation in Syst@me International (SI) is given in parentheses
in the second column,

To convert from to multiply by
atmosphere Pascal (Pa),2 +05 1.013 25*
Newton/meter
bar Pascal (Pa),2 +05 1.00*
Newton/meter
British thermal unit (mean) Joule (J) +03 1.055 87
calorie (mean) Joule (3) +00 4.190 02
dyne Newton (N) ~05 1.00%*
erg Joule (J) -07 1.00%*
Fahrenheit (temperature) Celsius (C) tc=(5/9)(tF-32)
foot meter (m) -01 3.048*
inch meter (m) -02 2.54~*
lbf(pound force, avoirdupois) Newton (N) +00 4.448 221 651
260 5*
lbm(pound mass, avoirdupois) kilogram (kg) -01 4.535 923 7*
Pascal Newtan/meter2 +00 1.00*
(N/m®)
pound force (lb. avoirdupois) Newton (N) +00 4.448 221 615
260 5*
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To convert from

pound mass (lbm avolirdupois)

poundal

slug

foot/second2
inch/second2
gram/centimeter3

3
lbm/inch

3
lbm/foot

slug/foot3

lbf/foot2

1bf/inch2(psi)
foot/second

inch/second

foot3

inch3

to

kilogram (kg)

Newton (N)

kilogram (kg)

meter/iecond2

(m/s%)

meterésecond2
{(m/s%)

kilogrgm/meter3
(kg/m™)

kilogram/meter
(kg/mg?

3

kilogrgm/meter3
(kg/m>)

kilogrgm/meter3
(kg/m~)

Pascal (Pa),
Newton/meter

Pascal (Pa),
Newton/meter

meter/second

(m/s)

meter/second
(m/s)
meter> (m3)

meter3 (m3)

L U L L LK U U & i

multiply by

-01

-0l

+03

+04

+01

+02

+01

+03

-05

i

4,535 923 7*

1.382 549 543
76*

1.459 390 29
3.048*
2.54*%
1.00*
2.767 990 5
1.601 846 3
5.153 79
4.788 025 8
6.894 757 2
3.048*

2.54

2.831 684 659

2%
1.638 706 4*
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GLOSSARY OF TERMS

appurtenance ~ a piece of equipment or an object located near a
source of an explosion, which can be accelerated by the blast
wave from the explosion.

blast yield - energy released in an explosion inferred from mea-
surements of the characteristics of blast waves generated by
the explosion.

burst pressure - the pressure at which a gas storage vessel
bursts or fails.

concrete penetrability factor - measures the resistance of con-
crete to impact penetration.

drag coefficient - ratio of drag force to dynamic force exerted
by wind pressure on a reference area,

explosive yield - energy released in an explosion, often expressed
as a percent or fraction of energy which would be released
by the same mass of a standard high explosive such as TNT.

far field barricade - a barricade located near the protected
structure.

FRAG - a computer program for predicting velocities of fragments
from bursting cylindrical and spherical pressure vessels.

FRISB - a computer program for predicting trajectories of frag-
ments with both lift and drag aerodynamic forces.

1lift coefficient~- ratio of lift force to dynamic force exerted
by wind pressure on a reference area.

LPG - liquified petroleum gas, usually liquified propane.

mound - An elevation of earth having a crest at least 3 ft. wide
with the earth at the natural slope on each side and with
such elevation that any straight line drawn from the top of
the side wall of a magazine or operating building or the
top of a stack containing explosives to any part of a maga-
zine, operating building or stack to be protected will pass
through the mound. The toe of the mound shall be located
as near the magazine, operating building or stack as practi-
cable.

near field barricade - barricades located near an explosive source
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overpressure - pressure in a blast wave above atmospheric pressure

perforation thickness - the maximum thickness of material which
will be completely penetrated by a missile at a given
velocity.

reflected impulse - integral of reflected pressure-time history.

risk assessment - the estimation of effects of some potentially
dangerous operation or situation; but also the estimation
of the probability that the event will occur and cause
some level of damage.

rocketing - propulsion of large fragments from liquid propellant
vessels resulting from the change of the liquid propellant
into a gas when the external pressure is released during
the fracturing of the vessel.

scabbing thickness - thickness of a target required to prevent
scabbing of material from the backface for a missile with a
given velocity.

~,

side-on impulse - integral of time history of side-on overpressure.

side-on overpressure - blast wave overpressure in an undisturbed
blast wave.

single-revetted barricade - a mound which has been modified by a
retaining wall preferably of concrete of such slope and
thickness as to hold firmly in place the 3 ft. width of
earth required for the top, with the earth at the natural
angle on one side. All other requirements of a mound shall
be applicable to the single-revetted barricades.

spalling or scabbing - the process of projection of pieces of
material from impacted plates or walls by stress wave re-
flection.

stable buckling ~ bending of a column under axial impulsive
load.

starting overpressure -~ a curve on a graph of dimensionless over-
pressure versus dimensionless distance used as a starting
point to compute the overpressure at a given distance from
the center of the vessel.

THRUST - a computer program for predicting trajectories of large
parts of pressure vessels containing flash-evaporating fluids.

total penetration depth - the depth a missile will penetrate into
an infinitely thick target.
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TUTTI - two dimensional finite difference computer program for
compressible fluids.

unconfined vapor cloud explosion - a gquantity of fuel released
to the atmosphere as a vapor or aerosol, subsequently mixed
with air and then exploded by some ignition source.

UNQL - a computer program for predicting velocities of two
unequal fragments of a failed pressure vessel.

vapor density - the ratio of the density of the vapor to that
of air at standard temperature and pressure.

vapor dome - the domé—shaped curve on a plot of thermodynamic
properties of a fluid which represents the boundary between
wet vapor and superheat,
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